88 resultados para Thermoplastic matrix composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber metal laminates are the frontline materials for aeronautical and space structures. These composites consists of layers of 2024-T3-aluminum alloy and composite prepreg layers. When the composite layer is a carbon fiber prepreg, the fiber metal laminate, named Carall, offers significant improvements over current available materials for aircraft structures. While weight reduction and improved damage tolerance characteristics were the prime drivers to develop this new family of materials, it turns out that they have additional benefits, which become more and more important for today's designers, such as cost reduction and improved safety. The degradation of composites is due to environmental effects mainly on the chemical and/or physical properties of the polymer matrix leading to loss of adhesion of fiber/resin interface. Also, the reduction of fiber strength and stiffness are expected due to environmental degradation. Changes in interface/interphase properties leads to more pronounced changes in shear properties than any other mechanical properties. In this work, the influence of moisture in shear properties of carbon fiber/epoxy composites and Carall have been investigated by using interlaminar shear (ILSS) and Iosipescu tests. It was observed that hygrothermal conditioning reduces the Iosipescu shear strength of CF/E and Carall composites due to the moisture absorption in these materials. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composites of aerosil fumed silica and tetraethoxysilane-derived sonogel were prepared by changing the aerosil content between 0 and 30wt% with respect to the silica content in the original tetraethoxysilane (TEOS). The structural characteristics were studied by density and Vickers microhardness measurements and analyzed by means of small-angle X-ray scattering (SAXS). The structure of the composite aerosil/TEOS-derived sonogel can be described as inclusions of the aerosil particles embedded in the matrix of the TEOS-derived sonogel, forming an aerosil/matrix interfacial surface inside the composite. The weakening of the bonding of aerosil/matrix interface, as suggested by the reported decrease in microhardness, increases the fracture toughness of the composite. The additive effect of the aerosil particles on the structure of the sonogel accounts for the increase of the bulk density and reduction of the specific surface of the composite. Some internal structure associated with the microclusters making up the sonogels is apparent from systematic deviations from Porod's law found in the system with small aerosil contents. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Curauá fiber processing characterization has been performed throughout the different processing steps. Unsaturated polyester has been used as matrix in the production of curauá reinforced composite samples. Compression molding process has been used to prepare the samples. Tensile strength, impact resistance, flexural strength, Young's modulus and elongation at break have been accessed for curauá composites in comparison with fiberglass composites. Mechanical properties were found not to attend the company's internal standards specification. However, the work has shown some alternatives to solve these problems such as the modification of equipment characteristics and resin formulation, the necessity of incorporation of a higher content of fiber and the possibility of using a new type of filler. Copyright © 2000 Society of Automotive Engineers, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of composite materials has increased in the recent decades, mainly in the aeronautics and automotives industries. In the present study is elaborated a computational simulation program of the bending test using the finite elements method, in the commercial software ANSYS. This simulation has the objective of analyze the mechanical behavior in bending of two composites with polymeric matrix reinforced with carbon fibers. Also are realized bending tests of the 3 points to obtain the resistances of the materials. Data from simulation and tests are used to make a comparison between two failures criteria, Tsai-Wu and Hashin criterion. Copyright © 2009 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ITO nanowires were synthesized by carbothermal reduction process, using a co-evaporation method, and have controlled size, shape, and chemical composition. The electrical measurements of nanowires showed they have a resistance of about 102 Ω. In order to produce nanocomposites films, nanowires were dispersed in toluene using an ultrasonic cleaner, so the PMMA polymer was added, and the system was kept under agitation up to obtain a clear suspension. The PMMA polymer was filled with 1, 2, 5 and 10% in weight of nanowires, and the films were done by tape casting. The results showed that the electrical resistance of nanocomposites changed by over 7 orders of magnitude by increasing the amount of filler, and using 5 wt% of filler the composite resistance decreased from 1010 Ω to about 104 Ω, which means that percolation threshold of wires occurred at this concentration. This is an interesting result once for nanocomposites filled with ITO nanoparticles is necessary about 18% in weight to obtain percolation. The addition of filler up to 10 wt% decreased the resistance of the composite to 103 Ω, which is a value close to the resistance of wires. The composites were also analyzed by transmission electron microscopy (TEM), and the TEM results are in agreement with the electrical ones about percolation of nanowires. These results are promising once indicates that is possible to produce conductive and transparent in the visible range films by the addition of ITO nanowires in a polymeric matrix using a simple route. © 2011 Materials Research Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to investigate how environmental degradation affects the mechanical and thermal performance of polyetherimide/carbon fiber laminates, in this work different weathering were conducted. Additionally, dynamic mechanical analysis, interlaminar shear strength tests and non-destructive inspections were performed on this composite before and after being submitted to hygrothermal, UV radiation and thermal shock weathering. According to our results, hygrothermally aged samples had their glass transition temperature and elastic and storage moduli reduced by plasticization effect. Photooxidation, due to UV radiation exposure, occurred only on the surface of the laminates. Thermal shock induced a reversible stress on the composite's interface region. The results revealed that the mechanical behavior can vary during weather exposure but since this variation is only subtle, this thermoplastic laminate can be considered for high-performance applications, such as aerospace. © The Author(s) 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared with the traditional composites, the incorporation of carbon nanotubes into polymeric matrices can generate materials with superior properties, especially thermal, electrical and tribological properties. The aim of this study was to study the polyamide 6.6/carbon nanotubes (PA 6.6/CNT) nanostructured composites crystallization kinetics. The solution mixing technique was used to obtain the nanostructured composites studied in this work. PA 6.6 films were produced with amounts of 0.1, 0.5, and 1.0 wt% (weight/weight) CNT. X-ray diffraction analyses were performed in order to determine the crystallographic properties of nanostructured composite. The nanostructured composites crystallization kinetic study was performed using the differential scanning calorimetry under isothermal and nonisothermal (dynamic) conditions. The results have shown addition of CNTs in the PA 6.6 reduces the Avrami exponent, affecting the crystallization process of the composite. © The Author(s) 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component. © 2013 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, thermoplastic starch (TPS)-clay bionanocomposites were obtained by an innovative methodology using a combination of methodologies commonly used in the composites and nanocomposites preparations. The main objectives or novelties were to confirm efficiency of the processing methodology by field emission gun scanning electron microscopy and investigate the effect of clay content on the spectroscopic, bulk and surface hydrophilic/hydrophobic properties of these bionanocomposites. Raman and FTIR spectroscopies confirmed the changes in the spectroscopic properties of the TPS bionanocomposites with the addition of the clay materials. Water absorption and contact angle measurements were also used to analyze the effect of the clay content on the hydrophilic properties of the TPS bionanocomposites. The results also showed that the addition of the cloisite-Na+ clay increased the bulk and surface hydrophobicities of the TPS matrix, which may increase its industrial application, particularly in manufacturing of food containers. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the spin concentration and the crystallinity in different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to the factors: composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The magnetic properties of the composites were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) was calculated. The crystallinity of the composites tested was characterized with X-ray diffraction (XRD). Filtek P60 and Filtek Z250 presented similarities in terms of spin concentration and crystallinity, irrespective of the material condition. The aging protocol influenced the composite Filmic Z350XT that exhibited a significant increase in the spin concentration. Besides, lower intensity peaks of the organic matrix and amorphous silica were also observed for both aged and expired Filtek Z350XT. Although a significant lower spin concentration was observed for the silorane composite in comparison to that of the methacrylates, a decrease in the relative intensity of peaks of the amorphous region related to the organic components in the diffractograms was observed. The material conditions tested influence the crystallinity and the magnetic properties of the composites evaluated. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural health monitoring (SHM) refers to the procedure of assessing the structure conditions continuously so it is an alternative to conventional nondestructive evaluation (NDE) techniques [1]. With the growing developments in sensor technology acoustic emission (AE) technology has been attracting attention in SHM applications. AE are characterized by waves produced by the sudden internal stress redistribution caused by the changes in the internal structure, such as fatigue, crack growth, corrosion, etc. Piezoelectric materials such as Lead Zirconate Titanate (PZT) ceramic have been widely used as sensor due to its high electromechanical coupling factor and piezoelectric d coefficients. Because of the poor mechanical characteristic and the lack in the formability of the ceramic, polymer matrix-based piezoelectric composites have been studied in the last decade in order to obtain better properties in comparison with a single phase material. In this study a composite film made of polyurethane (PU) and PZT ceramic particles partially recovered with polyaniline (PAni) was characterized and used as sensor for AE detection. Preliminary results indicate that the presence of a semiconductor polymer (PAni) recovering the ceramic particles, make the poling process easier and less time consuming. Also, it is possible to observe that there is a great potential to use such type of composite as sensor for structure health monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)