95 resultados para TROPICAL SOILS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O ensaio de penetração do cone elétrico e do piezocone pertence a um grupo de ensaios de campo, cuja utilização vem sendo cada vez mais difundida. Tanto o avanço da eletrônica como a rápida evolução da informática têm proporcionado equipamentos mais apropriados, menores, mais robustos e mais econômicos, permitindo a incorporação de diversos sensores a essa ferramenta de investigação. Isto contribuiu para que esse ensaio se consagrasse para a descrição contínua do perfil geotécnico, a definição do nível de água e para estimativa de parâmetros mecânicos do solo. Neste artigo faz-se uma breve apresentação do piezocone e do minicone elétrico: o primeiro vem sendo utilizado nos últimos anos, especialmente em geotecnia ambiental, e o segundo, na investigação da infra-estrutura de transportes. Apresentam-se e discutem-se exemplos de emprego do piezocone para identificação de regiões do maciço contaminadas e do minicone para detectar a superfície de ruptura de uma seção de um talude de aterro, para avaliar sua estabilidade através de retroanálises. Concluise o trabalho fazendo-se algumas considerações sobre a utilização dessa tecnologia moderna e recente em solos tropicais que ocorrem no Brasil.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
A.P. Puga, R.M. Prado, B. Mattiuz, D.W. Vale, and I.M. Fonseca. 2013. Chemical composition of corn and sorghum grains cultivated in Oxisol according to different application methods and doses of zinc. Cien. Inv. Agr. 40(1):97-108. In general, tropical soils present low concentrations of zinc (Zn), and the deficiency of Zn is recognized as a world nutritional problem for cereal production and human beings. Therefore, the main goal of this study was to assess the effects of different methods of Zn application on the quality of corn and sorghum grains grown in Oxisol. Two experiments were set up in the experimental area of UNESP (campus of Jaboticabal, Brazil). The following nine treatments were applied: three doses of Zn by banded application (seed furrows), three doses of Zn by incorporation into soil (0-20 cm depth), foliar application, seed application, and control (no Zn applied). The treatments were arranged in randomized blocks with four replicates. The contents of Zn, carbohydrates and proteins were determined for corn and sorghum grains. Regardless of the method, Zn application promoted higher contents of this micronutrient in corn and sorghum grains. The banded application method of Zn in soil promoted greater contents of total carbohydrates, starch and protein in both cultures. The incorporation of Zn into the soil method provided higher contents of soluble carbohydrates in both corn and sorghum grains.
Resumo:
Boron, one of the micronutrients frequently found in low levels in tropical soils affects nutrition and productivity of coconut palm trees essentially cultivated in tropical climates. The objective of this research study was to evaluate the effect of boron on the nutritional status of the plant and its productivity when artificially applied to the culture soil. The experiment was carried out in a four year old, artificially irrigated, dwarf coconut palm orchard in Brazil, between January, 2005 and October, 2006. The soil was a red yellow Latosol (B: 0.18 mg dm(-3)). The treatments consisted in the application of five boron dosages: zero, 1, 2, 4, and 6 kg ha(-1). In the field, the treatments were arranged according to a completely randomized block design, with four replications. Boron (borax) dosages were applied in equal halves directly into the soil in the months of January and February of 2005. Boron concentration in the soil and plant and plant productivity were evaluated. The higher palm tree production was associated to levels of 0.6mg dm(-3) of B in the soil and 23.5mg kg(-1) in leaves. Ninety five percent of palm trees maximum production was obtained with the use of a boron dosage of 2,1kg ha(-1).
Resumo:
Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)