225 resultados para TETRAGONAL BAGD2MN2O7
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Zirconia-based ceramics that retain their metastable tetragonal phase at room temperature are widely studied due to their excellent mechanical and electrical properties. When these materials are prepared from precursor nanopowders with high specific surface areas, this phase is retained in dense ceramic bodies. In this work, we present a morphological study of nanocrystalline ZrO2-2.8 mol% Y2O3 powders synthesized by the gel-combustion method, using different organic fuels - alanine, glycine, lysine and citric acid - and calcined at temperatures ranging from 873 to 1173 K. The nanopore structures were investigated by small-angle X-ray scattering. The experimental results indicate that nanopores in samples prepared with alanine, glycine and lysine have an essentially single-mode volume distribution for calcination temperatures up to 1073 K, while those calcined at 1173 K exhibit a more complex and wider volume distribution. The volume-weighted average of the nanopore radii monotonically increases with increasing calcination temperature. The samples prepared with citric acid exhibit a size distribution much wider than the others. The Brunauer-Emmett-Teller technique was used to determine specific surface area and X-ray diffraction, environmental scanning electron microscopy and transmission electron microscopy were also employed for a complete characterization of the samples.
Resumo:
The present paper describes the synthesis, characterization, structural refinement and optical absorption behavior of lead tungstate (PbWO(4)) powders obtained by the complex polymerization method heat treated at different temperatures for 2h in air atmosphere. PbWO(4) powders were characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) spectroscopy and ultraviolet visible (UV-vis) absorption spectroscopy measurements. XRD, Rietveld refinement and FT-Raman revealed that PbWO(4) powders are free of secondary phases and crystallizes in a tetragonal structure. The UV-vis absorption spectroscopy measurements suggest the presence of intermediary energy levels into the band gap of structurally disordered powders. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
BaTiO(3) powders were prepared through mechanical activation chemistry and analyzed by Rietveld refinement with X-ray diffraction data. Raw BaCO(3) and TiO(2) powders were dry milled for 5 and 20 h and then calcinated for 2 and 4 h at 800 degrees C. The milling process was found to have broken up the BaCO(3) and TiO(2) crystals into smaller crystals and formed only small amounts ( 1.5 wt%) of BaTiO(3). Subsequence calcinations for 2 and 4 h at 800 degrees C successfully produced large amounts (>97.7 wt%) of BaTiO(3) crystals. The calcination process also generated microstrains and crystallite-size anisotropy in BaTiO(3). An increase in the calcination time from 2 to 4 h increased the BaTiO(3) weight percentage and the crystal lite-shape anisotropy, but decreased the tetragonal distortion anisotropic microstrains in BaTiO(3) crystals. (C) 2008 International Centre for Diffraction Data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, we report on the synthesis of SrMoO4 powders by co-precipitation method and processed in a microwave-hydrothermal at 413 K for 5 h. These powders were analyzed by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL). XRD analyses revealed that the SrMoO4 powders are free of secondary phases and crystallize in a tetragonal structure. FT-Raman investigations showed the presence of Raman-active vibration modes correspondent for this molybdate. UV-vis technique was employed to determine the optical band gap of this material. SrMoO4 powders exhibit an intense PL emission at room temperature with maximum peak at 540 nm (green region) when excited by 488 nm wavelength of an argon ion laser. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work Ba0.99Eu0.01MoO4 (BEMO) powders were prepared by the first time by the Complex Polymerization Method. The structural and optical properties of the BEMO powders were characterized by Fourier Transform Infra-Red (FTIR), X-ray Diffraction (XRD), Raman Spectra, High-Resolution Scanning Electron Microscopy (HR-SEM) and Photoluminescent Measurements. XRD show a crystalline scheelite-type phase after the heat treatment at temperatures greater than 400 degrees C. The ionic radius of Eu3+ (0.109 nm) is lower than the Ba2+ (0.149 nm) one. This difference is responsible for the decrease in the lattice parameters of the BEMO compared to the pure BaMoO4 matrix. This little difference in the lattice parameters show that Eu3+ is expected to occupy the Ba2+ site at different temperatures, stayed the tetragonal (S-4) symmetry characteristic of scheelite-type crystalline structures of BaMoO4. The emission spectra of the samples, when excited at 394 nm, presented the D-5(1)-> F-7(0, 1 and 2) and D-5(0)-> F-7(0, 1, 2, 3 and 4) Eu3+ transitions at 523, 533, 554, 578, 589, 614, 652 and 699 nm, respectively. The emission spectra of the powders heat-treated at 800 and 900 degrees C showed a marked increase in its intensities compared to the materials heat-treated from 400 to 700 C. The decay times for the sample were evaluated and all of them presented the average value of 0.61 ms. Eu3+ luminescence decay time follows one exponential curve indicating the presence of only one type of Eu3+ symmetry site.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho é descrever a síntese e a caracterização óptica de uma solução sólida de óxido de zircônio contendo ítrio e lantânio. Foram misturados citrato de zircônio, nitrato de ítrio e nitrato de lantânio nas proporções 94 mol% ZrO2-6 mol% Y2O3 e 92 mol% ZrO2-6 mol % Y2O3-2 mol % La2O3. A análise de espectroscopia de absorção no infravermelho com tranformada de Fourier mostra material orgânico em decomposição e a análise térmica mostra a transformação de fases da zircônia tetragonal para monoclínica, a perda de água e a desidroxilação do zircônio. A análise por difração de raios X mostra formação de fases homogênea de ZrO2-Y2O3-La2O3 demonstrando que a adição de lantânio não provoca formação de fases, promovendo uma solução sólida baseada em zircônia cúbica. Os espectros de fotoluminescência mostram bandas de absorção em 562 nm e 572 nm (350 ºC) e bandas de absorção específicas em 543 nm, 561 nm, 614 nm e 641 nm (900 ºC). O efeito fotoluminescente a baixas temperaturas é causado por defeitos como (Y Zr,Y O)', (2Y Zr,V O)'' e V O. As emissões em 614 nm e 641 nm são causadas pela transição O-2p -> Zr-4d. Uma emissão em 543 nm pode ser atribuída a centros LaO8 com transição O-2p -> La-5d.
Resumo:
An experimental and theoretical study on the piezoelectric behaviour of PZT doped with a range of calcium ion concentrations is presented. A systematic study of the effect on the piezoelectric properties of PZT doped with various concentrations of CaO at constant sintering temperature and sintering time was carried out. The remanent polarization, planar coupling factor and frequency-thickness constant increase with calcium concentration. Ab initio perturbed ion calculations show that the lattice energy decreases with calcium addition for both tetragonal and rhombohedral phases of PZT.