147 resultados para Surface Electron


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim the aim of this study was to evaluate the efficacy of ultrasound in cleaning the surface of stainless steel and Ni-Ti endodontic instruments.Methodology Twenty nickel-titanium instruments (10 Quantec files and 10 Nitiflex) and 20 stainless steel K-files (10 Maillefer-Dentsply and 10 Moyco Union Broach) were removed from their original packages and evaluated using a scanning electron microscope. Scores were given for the presence of residues on the surface or the instruments. The instruments were then cleaned in an ultrasonic bath containing only distilled water or detergent solution for 15 min, and re-evaluated, using scanning electron microscopy.Results Before cleaning, a greater amount of metallic debris was observed on the nickel-titanium Quantec instruments (P < 0.05), when compared to those made of stainless steel. Statistical analysis showed that the use of ultrasound was effective for cleaning the instruments, regardless of the irrigating solution or the instruments type (P < 0.05).Conclusions the use of ultrasound proved to be an efficient method for the removal of metallic particles from the surface of stainless steel and Ni-Ti endodontic instruments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to examine the endothelial surface morphology and to perform morphometric analysis of the corneal endothelial cells of Yacare caiman (Caiman yacare) using scanning electron microscopy. Morphometric analysis with regard to polygonality, mean cell area, cell density and coefficient of variation of mean cell area was performed. Cell areas were measured using image analysis software. The normal corneal endothelium of Yacare caiman consisted of polygonal cells of uniform size and shape with interdigitations of the cell borders. Microvilli appeared as protrusions on the cellular surface. The average cell area was 270 +/- 24 mum(2) and the endothelial cell density was 3704 +/- 324 cells/mm(2). The coefficient of variation of cell area was 0.22. This study demonstrates that the Yacare caiman corneal endothelium is similar to those described in other vertebrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrically detected magnetic resonance (EDMR) and electron paramagnetic resonance (EPR) were used to investigate emeraldine base polyaniline films. The magnetic susceptibility presented a Curie (localized spins)-Pauli (delocalized spins) transition at 240 K, when we also observed a transition in the dependence of the g factor with temperature (T). Peak-to-peak linewidth decreases with increasing temperature, reflecting that motional narrowing limits the hyperfine and dipolar broadening in this polymer. EDMR spectra could only be observed above 250 K in accordance to EPR results. Surface and bulk transport could be separated and their analysis reflected the effect of magnetic interaction with oxygen. (c) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The secondary electron emission of dielectrics usually is measured by the pulse method, in which the dielectric is irradiated with short pulses of electrons. Attempts to use a dynamic method, in which the dielectric is irradiated continuously, have failed because the dielectric becomes charged and this charge interferes with the emission process. The dynamic method can, however, be applied to metals where volume charges are prevented. This article reports dynamic measurements of the total secondary emission yield from stainless steel, platinum, and aluminum and compares them with results from the current pulse method. In order to apply the dynamic method to metals a simple but important change in the setup was introduced: a dielectric slab was placed between the electrode and the metallic sample, which permitted the sample surface potential and therefore the energy of the incident electrons to change continuously. Unlike for dielectrics, the emission curves for metals are identical when obtained by the two methods. However, for a sample with deliberately oxidized surfaces the total secondary emission yield is smaller when measured with the dynamic method as compared with the pulse method, just as happens for dielectrics. (C) 2000 American Institute of Physics. [S0021-8979(00)03413-7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this in vitro study was to evaluate the surface and resin-dentine interface characteristics of permanent tooth dentine cut with diamond or carbide burs and treated with phosphoric acid (PA) or an acidic conditioner. Labial surfaces of permanent incisors were prepared into dentine with high-speed carbide or diamond burs and divided into two halves. Phosphoric acid 36% was applied on one half and non-rinse conditioner (NRC) was applied on the other half. Ten randomly selected scanning electron microscopy (SEM) fields from each specimen (n = 15) were evaluated. Occlusal surfaces of third molars were divided in two halves for evaluation of the resin-dentine interface. The halves were randomly assigned to one of each conditioner and restored with Prime & Bond NT/Spectrum. Ten specimens were analysed by SEM to evaluate hybrid layer formation and interfacial seal. We observed that surfaces prepared with carbide bur presented less residual smear plugs (P < 0.05) than surfaces prepared with diamond burs. Surfaces conditioned with NRC, which is a smear layer modifier, presented more residual smear plugs than surfaces conditioned with PA (P < 0.05). Treatment with PA resulted in more sealed interfaces than specimens treated with NRC. Within the limitations of this study the results showed that carbide burs leave a surface that is more conducive to bonding than diamond burs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. Ceramic surface treatment is crucial for bonding to resin. High crystalline ceramics are poorly conditioned using traditional procedures.Purpose. The purpose of this study was to evaluate the effect of silica coating on a densely sintered alumina ceramic relative to its bond strength to composite, using a resin luting agent.Material and methods. Blocks (6 X 6 X 5 mm) of ceramic and composite were made. The ceramic (Procera AllCeram) surfaces were polished, and the blocks were divided into 3 groups (n = 5): SB, airborne-particle abrasion with 110-mu m Al(2)O(3); RS, silica coating using Rocatec System; and CS, silica coating using CoJet System. The treated ceramic blocks were luted to the composite (W3D Master) blocks using a resin luting agent (Panavia F). Specimens were stored in distilled water at 37 degrees C for 7 days and then Cut in 2 axes, x and y, to obtain specimens with a bonding area of approximately 0.6 mm(2) (n = 30). The specimens were loaded to failure in tension in a universal testing machine, and data were statistically analyzed using a randomized complete block design analysis of variance and Tukey's test (alpha=.05). Fractured surfaces were examined using light microscopy and scanning electron microscopy to determine the type of failure. Energy-dispersive spectroscopy was used for surface compositional analysis.Results. Mean bond strength values (MPa) of Groups RS (17.1 +/- 3.9) (P = .00015) and CS (18.5 +/- 4.7) (P=.00012) were significantly higher than the values of Group SB (12.7 +/- 2.6). There was no statistical difference between Groups RS and CS. All failures occurred at the adhesive zone.Conclusion. Tribochemical silica coating systems increased the tensile bond strength values between Panavia F and Procera AllCeram ceramic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the purpose of this study was to evaluate, by scanning electron microscopy (SEM), the effects of Nd:YAG laser irradiation applied perpendicular or parallel to the root canal dentin wall. Methods: Thirty human teeth were divided into two groups: Group A (20 roots), laser application with circular movements, parallel to the dentin root surface; and Group B (10 roots), roots cut longitudinally and laser applied perpendicular to the root surface. Group A was subdivided into A1 (10 roots), laser application with 100 mJ, 15 Hz and 1.5 W; and A2 (10 roots) with 160 mJ, 15 Hz, and 2.4 W. Group B was subdivided into B1 (10 hemisections) and B2 (10 hemi-sections) with parameters similar to A I and A2. Four applications of 7-sec duration were performed, with a total exposure of 28 sec. SEM evaluations were made in the cervical, middle, and apical thirds, with 500X and 2000X magnifications. Morphological changes scores were attributed, and the results were submitted to Kruskal Wallis statistical test (5%). Results: Significant statistical differences were found between groups A and B (p = 0.001). In groups A1 and A2, few areas of dentin melting were observed. In groups B1 and B2, areas of melting dentin covering dentin surface were observed. Conclusions: It was concluded that intracanal laser application with circular movements (parallel to the surface) produces limited morphological changes in root canal dentin wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SnO2 coatings were deposited by a sol-gel dip-coating process to shield fluoroindate glasses (40In-F-3:16BaF(2):20SrF(2):20ZnF(2):2NaF:2GaF(3)) against corrosion in aqueous environments. The effect of the number of coating applications and of the withdrawal speed on the thickness, density and roughness of tin oxide films was investigated by X-ray reflectivity. Film thickness increases both with the number of coating applications and the withdrawal speed. The aqueous leaching of uncoated and SnO2-coated fluoroindate glasses was studied by scanning electron microscopy (SEM) and infrared spectroscopy (FTIR), showing that the glass surface was protected against hydrolytic attack. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface corrosion process associated with the hydrolysis of fluorozirconate glass, Z-BLAN (53ZrF(4), 20BaF(2), 20NaF, 4LaF(2), 3AlF(3)), and the corrosion protection efficiency of a nanocrystalline transparent SnO2 layer were investigated by X-ray photoelectron spectroscopy. The tin oxide film was deposited by the sol-gel dip-coating process in the presence of Tiron(R) as particle surface modifier agent. The chemical bonding structure and composition of the surface region of coated and non-coated ZBLAN were studied before water contact and after different immersion periods (5-30 min). In contrast to the effects occurring for non-coated glass, where the surface undergoes a rapid selective dissolution of the most soluble species inducing the formation of a new surface phase consisting of stable zirconium oxyfluoride, barium fluoride and lanthanum fluoride species, the results for the SnO2-coated glass showed that the hydrolytic attack induces a filling of the film nanopores by dissolved glass material and the formation of tin oxylluoride and zirconium oxyfluoride species. This process results in a modified film, which acts as a hermetic diffusion barrier protecting efficiently the glass surface. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polymer surface degradation and/or modification evolution of Teflon FEP and Mylar C films caused by a low energy electron beam were analyzed using a new method that consists in measuring the second crossover energy shift in the electronic emission curve. Upon prolonged irradiation, the second crossover energy shifts irreversibly to lower values in Teflon FEP but to higher values in Mylar C, indicating distinct mechanisms of surface degradation for the two polymers. The method represents a relatively inexpensive way to monitor early stages of surface degradation since the secondary electron emission comes from a maximum depth below the geometric surface of 100 mn in insulators. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tension-tension fatigue behavior of metal/fiber laminates (MFLs) has been investigated. These MFLs were produced with carbon fiber and by treating the aluminum foil to promote adhesion bonding by two methods: sulfuric-boric-oxalic acid anodization (SBOA) and chromic acid anodization (CAA). The surface treatments were evaluated by scanning electron microscopy (SEM) techniques and roughness measurements. It was observed that MFL specimens produced with SBOA treatments presents comparable mechanical results when compared with MFLs produced with CAA treatment. Microstructural observations of the fracture surfaces by SEM show hackle formation is the predominant damage mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With suitable thermal treatments, a nearly stoichiometric cordierite glass (2 MgO.2 Al2O3. 5 SiO2) shows a variety of crystal morphologies on the external surfaces: lozenges, regular and elongated hexagons, spherical and square shaped particles. We initially identified these morphologies through optical and scanning electron microscopy techniques. Their structural features were distinguished by x-ray diffraction patterns, infrared and Roman microprobe spectra. We concluded that there are close structural similarities for: lozenges and glass matrix; regular and elongated hexagons; spherical and square particles. The ordering degree increases in the following sequence: glass matrix, lozenges, hexagons, squares and spheres. The lozenge crystals are known as X-phase. The hexagons belong to the μ-cordierite (high quartz solid solution) metastable phase and the squares and spheres to the α-cordierite stable phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Covalently attached benzimidazole molecules on silica gel surface, ≡SiL (where L = N-propyl-benzimidazole), adsorbs Co(ClO4)2 from non-aqueous solvent by forming a surface complex according to the reaction: m ≡SiL + Co(ClO4)2 → (≡SiL)mCo(ClO4)2. The equilibrium constant and the adsorption capacity, determined by applying the Langmuir equation were b = 3.0 × 103 L mol-1 and Ns= 0.098 × 10-3 mol g-1, respectively. The metal is bonded through the nitrogen atom and the perchlorate ion is not coordinated. The ESR study indicated that the complex has essentially an octahedral geometry with tetragonal distortion, with the electrons of the four nitrogen atoms interacting with the cobalt central metal ion in the equatorial plane. Only one complex species was detected on the surface.