168 resultados para Subharmonic bifurcation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we search for the dynamics of a simple portal structure in the free and in the periodic excitation cases. By using the Center Manifold approach and Averaging Method, we obtain results on both stability and bifurcation of equilibrium points and periodic orbits. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Some consequences of dissipation are studied for a classical particle suffering inelastic collisions in the hybrid Fermi-Ulam bouncer model. The dynamics of the model is described by a two-dimensional nonlinear area-contracting map. In the limit of weak and moderate dissipation we report the occurrence of crisis and in the limit of high dissipation the model presents doubling bifurcation cascades. Moreover, we show a phenomena of annihilation by pairs of fixed points as the dissipation varies. (c) 2007 American Institute of Physics.
Resumo:
In this work, the occurrence of chaos (homoclinic scene) is verified in a robotic system with two degrees of freedom by using Poincare-Mel'nikov method. The studied problem was based on experimental results of a two-joint planar manipulator-first joint actuated and the second joint free-that resides in a horizontal plane. This is the simplest model of nonholonomic free-joint manipulators. The purpose of the present study is to verify analytically those results and to suggest a control strategy.
Resumo:
In this paper we consider a self-excited mechanical system by dry friction in order to study the bifurcational behavior of the arisen vibrations. The oscillating system consists of a mass block-belt-system which is self-excited by static and Coulomb friction. We analyze the system behavior numerically through bifurcation diagrams, phase portraits, frequency spectra and Poincare maps, which show the existence of nonhomoclinic and homoclinic chaos and a route to homoclinic chaos. The homoclinic chaos is also analyzed analytically via the Melnikov prediction method. The system dynamic is characterized by the existence of two potential wells in the phase plane which exhibit rich bifurcational and chaotic behavior.
Resumo:
This paper concerns a type of rotating machine (centrifugal vibrator), which is supported on a nonlinear spring. This is a nonideal kind of mechanical system. The goal of the present work is to show the striking differences between the cases where we take into account soft and hard spring types. For soft spring, we prove the existence of homoclinic chaos. By using the Melnikov's Method, we show the existence of an interval with the following property: if a certain parameter belongs to this interval, then we have chaotic behavior; otherwise, this does not happen. Furthermore, if we use an appropriate damping coefficient, the chaotic behavior can be avoided. For hard spring, we prove the existence of Hopf's Bifurcation, by using reduction to Center Manifolds and the Bezout Theorem (a classical result about algebraic plane curves).
Resumo:
It is of major importance to consider non-ideal energy sources in engineering problems. They act on an oscillating system and at the same time experience a reciprocal action from the system. Here, a non-ideal system is studied. In this system, the interaction between source energy and motion is accomplished through a special kind of friction. Results about the stability and instability of the equilibrium point of this system are obtained. Moreover, its bifurcation curves are determined. Hopf bifurcations are found in the set of parameters of the oscillating system.
Resumo:
In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nonideal systems are those in which one takes account of the influence of the oscillatory system on the energy supply with a limited power (Kononenko, 1969). In this paper, a particular nonideal system is investigated, consisting of a pendulum whose support point is vibrated along a horizontal guide by a two bar linkage driven by a DC motor, considered to be a limited power supply. Under these conditions, the oscillations of the pendulum are analyzed through the variation of a control parameter. The voltage supply of the motor is considered to be a reliable control parameter. Each simulation starts from zero speed and reaches a steady-state condition when the motor oscillates around a medium speed. Near the fundamental resonance region, the system presents some interesting nonlinear phenomena, including multi-periodic, quasiperiodic, and chaotic motion. The loss of stability of the system occurs through a saddle-node bifurcation, where there is a collision of a stable orbit with an unstable one, which is approximately located close to the value of the pendulum's angular displacement given by alpha (C)= pi /2. The aims of this study are to better understand nonideal systems using numerical simulation, to identify the bifurcations that occur in the system, and to report the existence of a chaotic attractor near the fundamental resonance. (C) 2001 Elsevier B.V. Ltd. All rights reserved.