170 resultados para Sex chromosome system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some species of the genus Characidium have heteromorphic ZZ/ZW sex chromosomes with a totally heterochromatic W chromosome. Methods for chromosome microdissection associated with chromosome painting have become important tools for cytogenetic studies in Neotropical fish. In Characidium cf. fasciatum, the Z chromosome contains a pericentromeric heterochromatin block, whereas the W chromosome is completely heterochromatic. Therefore, a probe was produced from the W chromosome through microdissection and degenerate oligonucleotide-primed polymerase chain reaction amplification. FISH was performed using the W probe on the chromosomes of specimens of this species. This revealed expressive marks in the pericentromeric region of the Z chromosome as well as a completely painted W chromosome. When applying the same probe on chromosome preparations of C. cf. gomesi and Characidium sp., a pattern similar to C. cf. fasciatum was found, while C. cf. zebra, C. cf. lagosantense and Crenuchus spilurus species showed no hybridization signals. Structural changes in the chromosomes of an ancestral sexual system in the group that includes the species C. cf. gomesi, C. cf. fasciatum and Characidium sp., could have contributed to the process of speciation and could represent a causal mechanism of chromosomal diversification in this group. The heterochromatinization process possibly began in homomorphic and homologous chromosomes of an ancestral form, and this process could have given rise to the current patterns found in the species with sex chromosome heteromorphism. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The Leporinus genus, belonging to the Anostomidae family, is an interesting model for studies of sex chromosome evolution in fish, particularly because of the presence of heteromorphic sex chromosomes only in some species of the genus. In this study we used W chromosome-derived probes in a series of cross species chromosome painting experiments to try to understand events of sex chromosome evolution in this family.Results: W chromosome painting probes from Leporinus elongatus, L. macrocephalus and L. obtusidens were hybridized to each others chromosomes. The results showed signals along their W chromosomes and the use of L. elongatus W probe against L. macrocephalus and L. obtusidens also showed signals over the Z chromosome. No signals were observed when the later aforementioned probe was used in hybridization procedures against other four Anostomidae species without sex chromosomes.Conclusions: Our results demonstrate a common origin of sex chromosomes in L. elongatus, L. macrocephalus and L. obtusidens but suggest that the L. elongatus chromosome system is at a different evolutionary stage. The absence of signals in the species without differentiated sex chromosomes does not exclude the possibility of cryptic sex chromosomes, but they must contain other Leporinus W sequences than those described here. © 2013 Parise-Maltempi et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pholcidae (Haplogynae) encompasses 967 described species, of which only 14 have been cytogenetic analyzed. Several chromosomal features have already been described including presence of meta- and sub-metacentric chromosomes and sex determination chromosome system (SDCS) of the X, X1X2Y, and X1X2 types, which contrast with the telo- and acrocentric chromosomes and SDCS of the X1X2 type typical of entelegyne spiders. To obtain further cytogenetic information for the family, we examined two pholcid species, Crossopriza lyoni (Blackwall 1867) and Physocyclus globosus (Taczanowski 1874) using both conventional staining and silver staining techniques. Crossopriza lyoni exhibited 2n = 23 = 22 + X in males and 2n = 24 = 22 + XX in females, while P. globosus showed 2n = 15 = 14 + X and 4n = 30 = 28 + 2X, both in male adults, 2n = 16 = 14 + XX in female adults and embryos, and 2n = 15 = 14 + X in male embryos. Both species revealed predominately metacentric and submetacentric chromosomes and a SDCS of the X/XX type. The cytogenetic data obtained in this work and those already recorded for C. lyoni indicate interpopulational and intraspecific numerical chromosome variation, suggesting the presence of chromosomal races or cytotypes in this species. The intraindividual numerical chromosome variation observed in male adult specimens of P. globosus may be explained by the presence of cytoplasmatic bridges between germ cells. The use of the silver staining technique to reveal the nucleolar organizer region (NOR) showed that chromosome pairs 4 and 6 and the X chromosome in C. lyoni are telomeric NOR-bearers, and that the chromosome pair 2 in P. globosus possesses a proximal NOR in the long arm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scaphum nigra has a uniquechromosomecomplement among approximately 100 species studied so far belonging to the subfamily Phaneropterinae. It is formed by 2n ([male]) = 26 and a FN = 29 and derived from the ancestral karyotype of the group 2n ([male]) = 31, FN = 31, by means of two centric fusions and one tandem fusion. The first between the X chromosome and a medium-sized autosome giving rise to a neo-XY sex chromosome mechanism of recent origin, and the second between two acrocentric ones, the bigger and a medium size, that gave rise to a large submetacentric element whose length is very uncommon in the subfamily. This process has created a bimodal karyotype that contrasts with the majority in this group, whose chromosomes usually can be arranged in a decreasing order of size. A third rearrangement incorporating the chromatin of a medium-sized autosome to the bigger one, explains the reduction observed in the number of chromosomes and the enlarged size of the submetacentric elements. These features demonstrate the effectiveness of chromosome number, their morphology and the change of the sex mechanism as useful tools for taxonomy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Y chromosomes are genetically degenerate and do not recombine with their matching partners X. Non-recombination of XY pairs has been pointed out as the key factor for the degeneration of the Y chromosome. The aim here is to show that there is a mathematical asymmetry in sex chromosomes which leads to the degeneration of Y chromosomes even in the absence of XX and XY recombination. A model for sex-chromosome evolution in a stationary regime is proposed. The consequences of their asymmetry are analyzed and lead us to a couple of conclusions. First, Y chromosome degeneration shows up v 2 more often than X chromosome degeneration. Second, if nature prohibits female mortalities from beeing exactly 50%, then Y chromosome degeneration is inevitable.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The speciose Brazilian Elateridae fauna is characterized by high karyotypic diversity, including one species (Chalcolepidius zonatus Eschscholtz, 1829) with the lowest diploid number within any Coleoptera order. Cytogenetic analysis of Conoderus dimidiatus Germar, 1839, C. scalaris (Germar, 1824,) C. ternarius Germar, 1839, and C. stigmosus Germar, 1839 by standard and differential staining was performed with the aim of establishing mechanisms of karyotypic differentiation in these species. Conoderus dimidiatus, C. scalaris, and C. ternarius have diploid numbers of 2n(male) = 17 and 2n(female) = 18, and a X0/XX sex determination system, similar to that encountered in the majority of Conoderini species. The karyotype of C. stigmosus was characterized by a diploid number of 2n=16 and a neoXY/neoXX sex determination system that was highly differentiated from other species of the genus. Some features of the mitotic and meiotic chromosomes suggest an autosome/ancestral X chromosome fusion as the cause of the neoXY system origin in C. stigmosus. C-banding and silver impregnation techniques showed that the four Conoderus species possess similar chromosomal characteristics to those registered in most Polyphaga species, including pericentromeric C band and autosomal NORs. Triple staining techniques including CMA(3)/DA/DAPI also provided useful information for differentiating these Conoderus species. These techniques revealed unique GC-rich heterochromatin associated with NORs in C. scalaris and C. stigmosus and CMA(3)-heteromorphism in C. scalaris and C. ternarius.