143 resultados para Serine Endopeptidases
Resumo:
The growth of Lactobacillus fermentum was studied in mixed culture with Saccharomyces cerevisiae during alcoholic fermentation of high test molasses (HTM). Yeast extract or a group of 17 amino acids caused a strong and fast decrease in yeast viability due to the strong increase of acidity produced by bacteria. Pure culture of Lactobacillus fermentum in dry sugar cane broth confirmed amino acids as the main nutrients needed to stimulate the growth of bacterial contaminant during alcoholic fermentation. The absence of L. fermentum growth was obtained when leucine: isoleucine or valine were not added to the medium. Phenylalanine, alanine, glutamic acid, cystine, proline, histidine, arginine, threonine, tryptophane, serine and methionine inhibited the bacterial growth at least in one of the cultures of L. fermentum tested.
Resumo:
The electrochemical reduction of serine, glycine, and leucine protected by the 4-nitrobenzenesulfonyl, group in N,N-dimethylformamide at mercury cathode occurs at two steps. The first one at -0.8 V vs. SCE, after a one-electron transfer, leads the anion radical formation that dimerizes and adsorbs at electrode. In the second step at -1.4 V, an instable dianion forms which then cleaves. The mechanism is discussed.
Resumo:
A thrombin-like serine protease, jararassin-I, was isolated from the venom of Bothrops jararaca. The protein was obtained in high yield and purity by a single chromatographic step using the affinity resin Benzamidine-Sepharose CL-6B. SDS-PAGE and dynamic light scattering analyses indicated that the molecular mass of the enzyme was about 30 kD. The enzyme possessed fibrinogenolytic and coagulant activities. The jararassin-I degraded the Bbeta chain of fibrinogen while the Aalpha chain and gammachain were unchanged. Proteases inhibitors, PMSF and benzamidine inhibited the coagulant activity. These results showed jararassin-I is a serine protease similar to coagulating thrombin-like snake venom proteases, but it specifically cleaves Bbeta chain of bovine fibrinogen. Single crystals of enzyme were obtained (0.2 mmx0.2 mmx0.2 mm) and used for X-ray diffraction experiments.
Resumo:
Immunohistochemistry was used to analyze the rat brain distribution of thimet oligopeptidase and neurolysin. Both enzymes appear ubiquitously distributed within the entire rat brain. However, neuronal perikarya and processes stained for neurolysin, while intense nuclear labeling was only observed for thimet oligopeptidase. These data suggest that neurolysin and thimet oligopeptidase, endopeptidases sharing several functional and structural similarities, are present in distinctive intracellular compartments in neuronal cells. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Objective and design: We have previously reported a role for annexin-A1 in liver proliferation and tumorogenicity as well as its action as an acute phase protein in a model of endotoxemia in interleukin-6 null mice.Material and methods: In this study, we have investigated the analysis of the gene and protein expression in annexin-A1 null mice and the wild type livers during foetal and adult life, and in the presence of a proinflammatory stimulus.Results: The data indicate a link between the expression of the annexin-A1 as serine-phosphorylated-protein during early events of the inflammatory response and as tyrosine-phosphorylated-form at later time-points, during the resolution of inflammation.Conclusions: The study of annexin-A1 post-translation modification may promote a new annexin-A1 peptide discovery programme to treat specific pathologies.
Resumo:
There are evidences that Giardia trophozoites contain and/or release proteolytic enzymes that may be implicated in pathogenesis of giardiasis. This report describes a preliminary characterization of the proteolytic activity in excretory/secretory (E/S) products of Giardia duodenalis trophozoites of an axenic Brazilian strain (BTU-11) and the reference strain Portland 1 (P1). The protease activity of E/S products in conditioned medium by trophozoites of each strain was analyzed using substrate (gelatin and collagen) impregnated SDS-PAGE and hemoglobin assay. The protease characterization was based on inhibition assays including synthetic inhibitors. Proteolytic products were detected in the conditioned medium by trophozoites of both assayed strains. In the gels containing copolymerized gelatin and collagen, E/S products promoted degradation of the substrates and the most evident proteolysis zones were distributed in the migration regions of 77 to 18 kDa and 145 to 18 kDa, respectively, in the patterns of gelatinolytic and collagenolytic activities. Degradation of hemoglobin was also observed, and the pattern of hydrolysis was similar in both E/S products assayed. Inhibition assays showed that the main proteolytic activity in both E/S products is due to cysteine proteases although the presence of serine proteases was also indicated, mainly in the hydrolysis of hemoglobin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Astrocytes and human cognition: Modeling information integration and modulation of neuronal activity
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tunicamycin, which inhibits N-glycosylation of proteins, was used as a tool to determine the type of linkage which occurs in glycoprotein antigens of Aspergillus fumigatus. When A. fumigatus extracts were electrophoretically separated and blotted then probed with anti-Aspergillus patients' sera, differences in antigenic profiles were noted when tunicamycin-treated samples were compared with controls. Tunicamycin had no detectable effect on the cellular proteinases of A. fumigatus, most of which are glycosylated. Some enzymatic components were lacking when extracellular proteinases were compared with those of control samples. The major catalase component of A. fumigatus is a concanavalin A (Con A)-binding glycoprotein. In cultures grown in the presence of tunicamycin, partiallydeglycosylated catalase components were obtained which could be distinguished from the native catalase by their altered mobilities in polyacrylamide gels. The effect of deglycosylation on catalase antigens was monitored using an antiserum raised to a ConA-binding fraction of A fumigatus mycelium. These antibodies bound both to the native glycoprotein and the partially deglycosylated material. These latter two were largely unaffected when incubated with an antiserum raised to a non-ConA-binding fraction of A. fumigatus which is essentially carbohydrate free. The ability to produce partially-glycosylated antigens of A. fumigatus offers a model to study the effect of basic structural modifications on both the enzymatic and antigenic activities of these molecules.
Resumo:
Giardia duodenalis isolates from asymptomatic or symptomatic patients and from animals present similarities and differences in the protein composition, antigenic profile, pattern of proteases and isoenzymes, as well as in nucleic acids analysis. In the present overview, these differences and similarities are reviewed with emphasis in the host-parasite interplay and possible mechanisms of virulence of the protozoon.
Resumo:
This review aims to report the major control mechanisms of protein and peptides digestion of special interest in human patients. Regarding protein assimilation its digestive process begins at the stomach with some not so indispensable actions comparatively to those of duodenal/jejunal lumen. However even the intestine processes are partially under gastric secretion control. Proteolytic enzyme activities are related to protein structure and amino acid constituents, tertiary and quartenary structures need HCl - denaturation prior to enzymatic hydrolysis. Thereafter the exopeptidases are guided by either NH 2 (aminopeptidases) or COOH (carboxypeptidases) terminals of the molecule while endopeptidases are oriented by the specific amino acids constituents of the peptide. Both dietary and luminal secreted proteins and polypeptides undergo to either limited or complete proteolysis resulting basic or neutral free-amino acids (40%) or dioctapeptides. The brush border peptidases continue to degrade oligopeptide to di-tripeptides and neutral free-amino acids. Some peptides are uptaked by the enterocytes whose cytosolic peptidases complete the hydrolysis. Hence the digestive products flowing in the portal vein are mainly free-amino acids from either luminal or cytosolic hydrolysis and some di-tripeptides intactly absorbed. Both mechanical and chemical processes of digestion are under neural (vagal), neuroendocrinal(acetilcholine),endocrinal(gastrin, secretin and cholecystokinin) or paracrinal (histamine) controls. The gastric phase (hydrochloric acid and pepsinogen secretions) is activated by gastrin, histamine and acetilcholine which respond to both dietary-amino acids (tryptophan and phenylalanine) and mechanic distention of stomach. The pancreatic secretion is stimulated by either cephalic or gastric phases and has influence on the intestinal phase of digestion. The intestinal types of cells S and I release secretin and cholecystokinin respectively in response of acid quimo (cells S) or amino acids and peptides (cells I) in the lumen. Secretin stimulates the releasing of water, bicarbonate and enteropeptidases whereas cholecystokinin acts on pancreatic enzymes.
Resumo:
Quinolones constitute a family of compounds with a potent antibiotic activity. The enzyme DNA gyrase, responsible for the replication and transcription processes in DNA of bacteria, is involved in the mechanism of action of these drugs. In this sense, it is believed that quinolones stabilize the so-called 'cleavable complex' formed by DNA and gyrase, but the whole process is still far from being understood at the molecular level. This information is crucial in order to design new biological active products. As an approach to the problem, we have designed and synthesized low molecular weight peptide mimics of DNA gyrase. These peptides correspond to sequences of the subunit A of the enzyme from Escherichia coli, that include the quinolone resistance-determining region (positions 75-92) and a segment containing the catalytic Tyr-122 (positions 116-130). The peptide mimic of the non-mutated enzyme binds to ciprofloxin (CFX) only when DNA and Mg2+ were present (Kd = 1.6 × 10 -6 m), a result previously found with DNA gyrase. On the other hand, binding was reduced when mutations of Ser-83 to Leu-83 and Asp-87 to Asn-87 were introduced, a double change previously found in the subunit A of DNA gyrase from several CFX-resistant clinical isolates of E. coli. These results suggest that synthetic peptides designed in a similar way to that described here can be used as mimics of gyrases (topoisomerases) in order to study the binding of the quinolone to the enzyme-DNA complex as well as the mechanism of action of these antibiotics. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd.