141 resultados para STEM MULTISYNAPTIC CONNECTIONS
Resumo:
There is controversy over how hormonal conditions influence cerebral physiology. We studied pattern-shift visual evoked potentials (PS-VEP), brain stem auditory evoked potentials (BAEP) and short-latency somatosensory evoked potentials (SSEV) in 20 female volunteers at different phases of the menstrual cycle (estrogen phase, ovulatory day and progesterone phase). Statistical analysis showed decreased latencies for P 100 (PS-VEP), N 19and P 22 (SSEV) waves in the progesterone phase compared with the estrogen phase. There was no significant difference between the estrogen and the ovulation day values. Comparing the three above stages, there were no significant differences in the brainstem auditory evoked potentials. The reduction of the latencies of the potentials generated in multisynaptic circuits provides the first consistent neurophysiological basis for a tentative comprehension of human pre-menstrual syndrome.
Resumo:
Several leaf anatomical features are potentially systematically informative within both the family Vochysiaceae and the order Myrtales, notably tracheoidal idioblasts, mucilage cells and secretory canals. Tracheoids with spiral wall thickenings are present in the mesophyll of most species of Vochysia, and also occur in several other families of Myrtales. Mucilage cells are common in the leaf epidermis in some Vochysiaceae. Secretory ducts are present in the midrib in Salvertia and Vochysia, which are apparently closely related, although Salvertia also shares some leaf anatomical characters with Qualea and Callisthene. Anatomical data do not support the segregation of Ruizterania from Qualea; leaves of R. albiflora leaves are very similar to those of Q. paraensis in venation pattern, and leaf and stem anatomy. Different venation patterns are characteristic of sections within the genus Qualea, but within the large genus Vochysia, leaf anatomy is variable even within a subsection. Amongst other Myrtales, leaf anatomy of Vochysiaceae most closely resembles that of Combretaceae and Onagraceae. © 2002 The Linnean Society of London.
Resumo:
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIFSA domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIFSA may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.
Resumo:
Studies were conducted to show the effect of different substrata on the development of stem cuttings of Lippia alba made of limonene-carvone chemotype. The experiment was done in the College of Agronomical Sciences, UNESP, Botucatu, SP, Brazil in 2000. The cuttings were planted in polystyrene trays consisting of 72 cells. The cuttings had about 0.20 m of length and were put in the following substrata: Fine sand (T1), commercial substratum (T2), carbonised rice peel and local soil (T3), local soil, cow manure and carbonised rice peel (T4), vermiculite (T5), and carbonised rice peel (T6). After 40 days the development of stem cuttings were evaluated. High rate of rooting of stem cuttings was verified, with average of 95% and no significant difference between the treatments. In relation to dry mass of aerial parts and dry mass of roots, significant differences were found. For dry mass production of aerial parts the commercial substratum (T2) and the local soil, cow manure, carbonised rice peel (T4) were optimal. For mass of roots the local soil, cow manure, carbonised rice peel (T4) proved to be the best.
Resumo:
Aloysia triphylla (L'Hérit) Britton is a perennial and bushy plant, with simple, entire, lanceolate and whorl shaped leaves and originally from South America. It is used as medicinal plant in Brazil with stomatic and sedative properties. The employment of stem cuttings for propagation of pre-selected plants, acquired great importance, because it eliminates the juvenile phase of seedlings, which can be produced in a shorter period of time. The rooting of stem cuttings is stimulated by auxin and, boric acid supply is essential for growth and development of initial rootlets. This micronutrient is required 48 hours after plant segments have been placed into auxin solution and it can be supplied any time, including the seedling growth period. The experiment was carried out in the Department of Plant Production, UNESP-Botucatu-SP-Brazil, with stem-cuttings of Aloysia triphylla (L'Hérit) Britton, Verbenaceae obtained from the Medicinal and Aromatic Plant Garden. The aim of the work was to verify the influence of growth regulators and boric acid on stem cutting rooting of this species. The 15 cm-stem cuttings, without leaves, were submerged during 24 hs in the following solutions: water; 150 mg.L-1 of IBA; 150 mg.L-1 of IBA+ Boric acid; 250 mg.L-1 of IBA; 250 mg.L-1 of IBA + Boric acid. The statistical design was entirely randomized with 5 treatments and 3 replications, totalizing 15 plots with 10 stem cuttings each. They were planted on propylene trays with vermiculite and kept under spraying condition during twenty five days. The best results were observed in treatment 250 mg.L -1 of IBA+ Boric acid on number of roots, length of roots, rooting percentage, fresh and dry weight of leaves when compared with all other treatments. We can conclude that this treatment is the most suitable for stem cutting rooting of this species.
Resumo:
Stem canker caused by the fungus Diaporthe phaseolorum f. sp. meridionalis is a disease that limits soybean cultivation. Phenotypic evaluations aiming at disease resistance require labor-intensive processes, as for instance handling and transport of phytopathogens. The use of DNA markers in the selective procedures eases certain phases, besides being practical, safe and reliable. A RAPD fragment of 588pb was identified among bulks of resistant and susceptible plants in the cross BR92-15454 (R) x IAC-11 (S). Through co-segregation, the distance between the resistance locus and the fragment was estimated at 7.4 ± 2.1 cM, with a Lodmax. of 23.072 (first year) and at 6.0 ± 3.4 cM with a Lodmax. of 7.806 (second year). The fragment was converted into a SCAR marker and digested with enzyme Hinc II, which made the classification in homozygous resistant, heterozygous resistant and susceptible plants possible. This SCAR marker is suitable for use in the improvement program conducted in Jaboticabal.
Resumo:
Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex. © 2008 Wiley-Liss, Inc.
Resumo:
Investigation of the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in chronic myeloid leukemia patients is essential to predict prognosis and survival. In 20 patients treated at the Bone Marrow Transplantation Unit of São José do Rio Preto (São Paulo, Brazil), we used fluorescence in situ hybridization (FISH) to investigate the frequency of cells with BCR/ABL rearrangement at diagnosis and at distinct intervals after allo-HSCT until complete cytogenetic remission (CCR). We investigated the disease-free survival, overall survival in 3 years and transplant-related mortality rates, too. Bone marrow samples were collected at 1, 2, 3, 4, 6, 12, and 24 months after transplantation and additional intervals as necessary. Success rate of the FISH analyses was 100%. CCR was achieved in 75% of the patients, within on average of 3.9 months; 45% patients showed CCR within 60 days after HSCT. After 3 years of the allo-HSCT, overall survival rate was 60%, disease-free survival was 50% and the transplant-related mortality rate was 40%. The study demonstrated that the BCR-ABL FISH assay is useful for follow-up of chronic myeloid leukemia patients after HSCT and that the clinical outcome parameters in our patient cohort were similar to those described for other bone marrow transplantation units. ©FUNPEC-RP.
Resumo:
Two tests were performed. In the first, resistance to Didymella bryoniae was determined for the following genotypes: the pumpkins 'Ikky', 'Agroceres', 'Kirameki' and 'Shelper', watermelon progenies 1a, 2a, 3a, 5a, 1b, 2b, 3b and 5b, and 'Gherkin' (C. anguria). The plants were inoculated with the fungus during transplanting. The evaluations of the test were performed every 15 d according to a scoring scale adopted by Dusi et al. (1994). The second test examined compatibility among the rootstocks x grafts, and their effects on production. The rootstocks, 5 pumpkins including 'Ikky', 'Agroceres', 'Kirameki', 'Shelper', six watermelon progenies 1a, 2a, 5a, 1b, 2b and 5b, and one 'Gherkin', were planted one week before planting of the grafted 'Bônus No. 2' melon. The experiments were carried out with 12 treatments, including the control ('Bônus No. 2') with 3 replications with 14 grafted plants per each replication. For the first test, the first three evaluations (at 15, 30 and 45 d after inoculation) did not show characteristic lesions of stem canker, but progeny 3b was found to be susceptible in evaluations performed at 60 and 75 d after inoculation. Progeny 3a demonstrated intermediate susceptibility, while progenies 1a, 2a, 5a, 1b, 2b and 5b, the pumpkins 'Kirameki', 'Shelper', 'Ikky' and 'Agroceres', and 'Gherkin', showed resistance to Didymella bryoniae. In the second test, watermelon progenies 1a, 5a, 1b and 2b, and the pumpkins 'Kirameki', 'Shelper', 'Ikky' and 'Agroceres' showed a level of grafting success of 100%, while results with progenies 2a and 5b, and 'Gherkin' were different in grafting success, respectively 91.67, 98.33 and 43.33%. For other fruit parameters, weight, longitudinal and transverse diameters, pulp thickness and level of total soluble solids, there were no differences among the treatments.
Resumo:
This work presents a study regarding the optimization of multipulse converters. A general expression for the connection (Δ or Y) for both 12 and 18-pulses is obtained and describes the output voltages on the secondary windings, depending on the voltage reference from the primary. These generalized expressions allows choosing different ratios between input and output voltages and as result an optimum operation point for the converter can be calculated. Considering Δ-connected converters the optimum point occurs when the magnetic core of the autotransformer processes 18% and 17% of the output power for 12 and 18-pulses, respectively. For Y-connected converters the optimum point occurs when the kVA rating is 13% and 18% for 12 and 18-pulses, respectively. Based on these results magnetic elements can be calculated and designed leading to a great weight and volume reduction and also to lower costs and losses. Finally an analysis is made to improve the kVA rating of the transformers for 12 and 18 pulses converters. © 2009 IEEE.
Resumo:
Multipulse rectifier topologies based on autoconnections, or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies mitigate many low-order current harmonics in the utility, reducing the THD (total harmonic distortion) and increasing the power factor. This paper presents a mathematical model based on phasor diagrams, that results in a single expression able to unify all differential topologies connections (Delta and Wye), for both step-up or step-down autotransformers, for 12 and 18-pulse AC-DC converters. The proposed family of converters can be designed for any relationship between the input voltage and the load voltage. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18 pulses rectifier with Wye or Delta-differential connection. The design procedure, simple and fast, is developed and tested for a prototype rating 6 kW and 250 V on the DC load © 2010 IEEE.
Resumo:
Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control), 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks) quantitative real-time RT-PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks) all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.
Resumo:
Lasiodiplodia theobromae was found causing stem rot on commercial production of Begonia x elatior in São Paulo, Brazil. Illustrations, morphological and molecular description are provided. Based on the morphology, this fungus was recognized as L. theobromae. However, L. theobromae has high similarity with other Lasiodiplodia species, some of which are not possible to be separated by morphological characters. Molecular identification of the fungus isolated from the infected tissues was conducted. The strain from begonia clustered with other isolates of L. theobromae. This is the first report of the occurrence of L. theobromae on B. elatior. © 2012 Australasian Plant Pathology Society Inc.
Resumo:
Objectives: The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods: DPSC cells were grown in 0.05-0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results: DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance: Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. © 2012 Academy of Dental Materials.
Resumo:
In vertebrate species, testosterone seems to inhibit spermatogonial differentiation and proliferation. However, this androgen can also be converted, via aromatase, into estrogen which stimulates spermatogonial differentiation and mitotic activity. During seasonal spermatogenesis of adult bullfrogs Lithobates catesbeianus, primordial germ cells (PGCs) show enhanced testosterone cytoplasm immunoexpression in winter; however, in summer, weak or no testosterone immunolabelling was observed. The aim of this study was to confirm if PGCs express stem cell markers-alkaline phosphatase (AP) activity and GFRα1 (glial-cell-line-derived neurotrophic factor)-and verify whether testosterone is maintained in these cells by androgen receptors (ARs) and/or sex hormone-binding globulin (SHBG) in winter. Furthermore, regarding the possibility that testosterone is converted into estrogen by PGCs in summer, the immunoexpression of estrogen receptor (ER)β was investigated. Bullfrog testes were collected in winter and in summer and were embedded in glycol methacrylate for morphological analyses or in paraffin for the histochemical detection of AP activity. GFRα1, AR, SHBG and ERβ expression were detected by Western blot and immunohistochemical analyses. The expression of AP activity and GFRα1 in the PGCs suggest that these cells are spermatogonial stem cells. In winter, the cytoplasmic immunoexpression of ARs and SHBG in the PGCs indicates that testosterone is maintained by these proteins in these cells. The cytoplasmic immunoexpression of ERβ, in summer, also points to an ER-mediated action of estrogen in PGCs. The results indicate a participation of testosterone and estrogen in the control of the primordial spermatogonia during the seasonal spermatogenesis of L. catesbeianus. © 2012 S. Karger AG, Basel.