292 resultados para SODIUM HYDROXIDES
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this work was to test mineral preference in hydrated rats that received a pulse intracerebroventricular (icv(p)) injection of ANG II at a dipsogenic dose (50 ng). The icv(p) ANG II induced a four-fold higher ingestion of 0.15 M NaHCO(3) than of other mineral solutions at palatable concentrations (0.15 M NaCl, 0.05 mM CaCl(2) and 0.01 M KCl) in a five-bottle test with water available in a fifth bottle; water intake was not consistently high in this test. Contrary to what is predicted by the mineralocorticoid/angiotensin II synergy hypothesis, the 0.15 M NaCl intake in the five-bottle test was not enhanced by icvp ANG H preceded by deoxycorticosterone (DOCA) treatment (2.5 mg/day for 3 days); neither was the NaHCO(3) intake. This result contrasted with the vigorous ingestion of both isotonic sodium solutions, but mostly of NaCl, rather than of other fluids, by sodium-depleted (furosemide 10 mg sc + 24 h removal ambient sodium) rats in a sodium appetite test. The results suggest that mineralocorticoid combined to icv(p) ANG II does not simulate the sodium preference shown during sodium appetite. The results also show that a dipsogenic dose of central ANG II induces a reliable ingestion of isotonic sodium bicarbonate in the rat. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A water deprived animal that ingests only water efficiently corrects its intracellular dehydration, but remains hypovolemic, in negative sodium balance, and with high plasma renin activity and angiotensin II. Therefore, it is not surprising that it also ingests sodium. However, separation between thirst and sodium appetite is necessary to use water deprivation as a method to understand the mechanisms subserving sodium appetite. For this purpose, we may use the water deprivation-partial repletion protocol, or WD-PR. This protocol allows performing a sodium appetite test after the rat has quenched its thirst; thus, the sodium intake during this test cannot be confounded with a response to thirst. This is confirmed by hedonic shift and selective ingestion of sodium solutions in the sodium appetite test that follows a WD-PR. The separation between thirst and sodium appetite induced by water deprivation permits the identification of brain states associated with sodium intake in the appetite test. One of these states relates to the activation of angiotensin II All receptors. Other states relate to cell activity in key areas, e.g. subfornical organ and central amygdala, as revealed by immediate early gene c-Fos immunoreactivity or focal lesions. Angiotensin II apparently sensitizes the brain of the water deprived rat to produce an enhanced sodium intake, as that expressed by spontaneously hypertensive and by young normotensive rat. The enhancement in sodium intake produced by history of water deprivation is perhaps a clue to understand the putative salt addiction in humans.The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009. (C) 2010 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)