94 resultados para SEROTONERGIC NEURONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we describe a feature extraction algorithm for pattern classification based on Bayesian Decision Boundaries and Pruning techniques. The proposed method is capable of optimizing MLP neural classifiers by retaining those neurons in the hidden layer that realy contribute to correct classification. Also in this article we proposed a method which defines a plausible number of neurons in the hidden layer based on the stem-and-leaf graphics of training samples. Experimental investigation reveals the efficiency of the proposed method. © 2002 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the effect of the acetyl-L-carnitine (ALC) supplementation on the myenteric neurons of the jejunum of rats made diabetic at the age of 105 days by streptozotocin (35 mg/kg body weight). Four groups were used: non-diabetic (C), non-diabetic supplemented with ALC (CC), diabetic (D), diabetic supplemented with ALC (DC). After 15 weeks of diabetes induction the blood was collected by cardiac puncture to evaluate glycaemia and glycated haemoglobin. Next the animals were killed and the jejunum was collected and subjected to whole-mount preparation to evidence the myenteric neurons through the histochemical technique of the NADH-diaphorase. The neuronal counts were made in 80 microscopic fields, in tissue samples of five animals of each group. The profiles of the cell bodies of 1000 neurons per group were analysed. Diabetes induced a significant increase in the area of the cell body and decrease in the number of NADH-diaphorase positive myoenteric neurons. ALC suplementation to the diabetic group promoted smaller hypertrophic effects and less neuronal loss than in the myoenteric neurons of the diabetic rats, and in addition diminished the body weight decrease and reduced the fasting glycaemia. © 2005 Blackwell Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The suprachiasmatic nucleus, an essential diencephalic component of the circadian timing system, plays a role in the generation and modulation of behavioral and neuroendocrine rhythms in mammals. Its cytoarchitecture, neurochemical and hodological characteristics have been investigated in various mammalian species, particularly in rodents. In most species, two subdivisions, based on these aspects and considered to reflect functional specialization within the nucleus, can be recognized. Many studies reveal a typical dense innervation by serotonergic fibers in this nucleus, mainly in the ventromedial area, overlapping the retinal afferents. However, a different pattern occurs in certain animals, which lead us to investigate the distribution of serotonergic afferents in the suprachiasmatic nucleus of the Capuchin monkey, Cebus apella, compared to the marmoset, Callithrix jacchus, and two Rattus norvegicus lines (Long Evans and Wistar), and to reported findings for other mammalian species. Our morphometric data show the volume and length of the suprachiasmatic nucleus along the rostrocaudal axis to be greatest in C. apella > C. jacchus > Long Evans ≥ Wistar rats, in agreement with their body sizes. In C. apella, however, the serotonergic terminals occupy only some 10% of the nucleus' area, less than the 25% seen in the marmoset and rats. The distribution of the serotonergic fibers in C. apella does not follow the characteristic ventral organization pattern seen in the rodents. These findings raise questions concerning the intrinsic organization of the nucleus, as well as regarding the functional relationship between serotonergic input and retinal afferents in this diurnal species. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cochlear root neurons (CRNs) are involved in the acoustic startle reflex, which is widely used in behavioral models of sensorimotor integration. A short-latency component of this reflex, the auricular reflex, promotes pinna movements in response to unexpected loud sounds. However, the pathway involved in the auricular component of the startle reflex is not well understood. We hypothesized that the auricular reflex is mediated by direct and indirect inputs from CRNs to the motoneurons responsible for pinna movement, which are located in the medial subnucleus of the facial motor nucleus (Mot7). To assess whether there is a direct connection between CRNs and auricular motoneurons in the rat, two neuronal tracers were used in conjunction: biotinylated dextran amine, which was injected into the cochlear nerve root, and Fluoro-Gold, which was injected into the levator auris longus muscle. Under light microscopy, close appositions were observed between axon terminals of CRNs and auricular motoneurons. The presence of direct synaptic contact was confirmed at the ultrastructural level. To confirm the indirect connection, biotinylated dextran amine was injected into the auditory-responsive portion of the caudal pontine reticular nucleus, which receives direct input from CRNs. The results confirm that the caudal pontine reticular nucleus also targets the Mot7 and that its terminals are concentrated in the medial subnucleus. Therefore, it is likely that CRNs innervate auricular motoneurons both directly and indirectly, suggesting that these connections participate in the rapid auricular reflex that accompanies the acoustic startle reflex. © 2008 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Findings: • What is the central question of this study? The main purpose of the present manuscript was to investigate the cardiorespiratory responses to hypoxia or hypercapnia in conscious rats submitted to neuronal blockade of the parafacial region. We clearly showed that the integrity of parafacial region is important for the respiratory responses elicited by peripheral and central chemoreflex activation in freely behavior rats. • What is the main finding and its importance? Since the parafacial region is part of the respiratory rhythm generator, they are essential for postnatal survival, which is probably due to their contribution to chemoreception in conscious rats. The retrotrapezoid nucleus (RTN), located in the parafacial region, contains glutamatergic neurons that express the transcriptor factor Phox2b and that are suggested to be central respiratory chemoreceptors. Studies in anaesthetized animals or in vitro have suggested that RTN neurons are important in the control of breathing by influencing respiratory rate, inspiratory amplitude and active expiration. However, the contribution of these neurons to cardiorespiratory control in conscious rats is not clear. Male Holtzman rats (280-300 g, n= 6-8) with bilateral stainless-steel cannulae implanted into the RTN were used. In conscious rats, the microinjection of the ionotropic glutamatergic agonist NMDA (5 pmol in 50 nl) into the RTN increased respiratory frequency (by 42%), tidal volume (by 21%), ventilation (by 68%), peak expiratory flow (by 24%) and mean arterial pressure (MAP, increased by 16 ± 4, versus saline, 3 ± 2 mmHg). Bilateral inhibition of the RTN neurons with the GABAA agonist muscimol (100 pmol in 50 nl) reduced resting ventilation (52 ± 34, versus saline, 250 ± 56 ml min-1 kg-1 with absolute values) and attenuated the respiratory response to hypercapnia and hypoxia. Muscimol injected into the RTN slightly reduced resting MAP (decreased by 13 ± 7, versus saline, increased by 3 ± 2 mmHg), without changing the effects of hypercapnia or hypoxia on MAP and heart rate. The results suggest that RTN neurons activate facilitatory mechanisms important to the control of ventilation in resting, hypoxic or hypercapnic conditions in conscious rats. © 2012 The Authors. Experimental Physiology © 2012 The Physiological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2,4 dichlorophenoxyacetic acid (2,4-D) is a systemic herbicide whose effects in animal organic systems have been examined in previous studies, being the neurotoxicity considered the predominant effect. However, the studies that detect the 2,4-D neurotoxicity have merely focused in the central nervous system, and therefore, little is known about the effect of this herbicide in the enteric nervous system. This study aimed to verifying the 2,4-D effects on the myenteric neurons in duodenum of Wistar rats. Ten 60-day-old male Wistar rats (Rattus norvegicus) were divided in two groups: control group (C) that did not receive 2,4-D and experimental group (E) that received 5.0 mg of 2,4-D/kg for 15 days. At the end of experimental period, the animal were euthanized, the duodenum was collected and processed for NADPH-diaphorase histochemical analysis in order to expose the nitrergic myenteric neurons (NADPH-dp). In the light microscopy analysis, the whole-mount preparation obtained from duodenum of each animal were image-captured in 120 and 40 fields, for quantitative and morphometric analyses of myenteric neurons, respectively. The neuronal density was not affected when comparing the two groups, but an increase (p > 0.05) of 8.5% was observed in the cell body area of neurons in the E group. In conclusion, the ingestion of 2,4-D at a dosage of 5.0 mg/kg body weight for 15 days does not change the neuronal density, but promotes the hypertrophy of NADPH-dp myenteric neurons in duodenum of the rats of this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed. © 2012 ISDN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280-340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL-1) or free saporin (sham, 0.021 ng.nL-1) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg-1, b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid. © 2013 da Silva et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)