75 resultados para Recycled
Resumo:
The programs Water Producer and Water Mine are the starting point for the research, whose the main objective is to develop a study on the necessity and possibility to forming water producers in the Veado Creek Watershed Deer, located in Presidente Venceslau - Sao Paulo, in order to improve the quality and quantity of water from the spring. To this end, the implementation of programs in the spring, especially the Water Mine, developed by the State of Sao Paulo, could help change the situation in which degradation is the area of the watershed. The main methodological procedures were performed: survey and literature review, interviews with employees SEAAMA, CATI, interview with the president of the Association of Owners of Rural Watershed of Deer Creek; interview with landowners of the Fountain Creek Watershed Deer; work in the search field at the landfill to the DAE and the Association of Collectors of Recycled. We are dealing with issues such as the importance of the Code of forests with regard to the protection of water resources, decentralized management and participatory of water resources, Payment by Environmental Services, production of water, characterization and diagnosis of the environmental Microbacia of Wealth Córrego do Veado, sanitation of the municipality of Presidente Venceslau. Analyzed the current situation of the watershed of the spring, highlighting the main actions that have been performed by the municipality through the watershed program of the State of São Paulo City Hall and through the resources FEHIDRO. The obtained results allowed to demonstrate the need and the possibility of setting up the Project Mine Of Water in the watershed of the fountain and the interest of owners interviewed by adherence to the Project and the protection of the source
Resumo:
CONAMA Resolution 307 / 02, in Article 4, states that the primary goal of those involved in the reuse process of construction and demolition waste is not the generation of such wastes, secondarily is the reduce, reuse, recycling and proper disposal of such material. The disposal problem of large volumes of waste generated coupled with the scarcity of natural resources and environmental degradation involved in the extraction process of such materials resulted in several studies, that after many analyzes proposed various forms of reuse and recycling . The NBR 15.116/04 provides requirements for the use of recycled aggregates in paving and concrete without structural function. This work aims to show the usage potential of recycled aggregates from waste generated in construction and demolition sampled Group AB Areias, Pindamonhangaba (SP) in order to meet the standards in Brazil, as well as the environmental contribution by reducing the use of raw materials extracted from nature. After stabilization and particle size analysis of the California Bearing Ratio and Proctor, obtained mixtures of recycled aggregates showed higher values submitted by the minimum standards related, with excellent potential for use in paving
Resumo:
A large part of hydraulic hoses is produced on a mandrel. The mandrel has longer length and circular profile being produced by extrusion of polyamide polymer, which in this case is imported, then the process is depending on the import process, which entails high shipping costs and fees. This work studies the production of recycled mandrel, using the mandrel that is out of dimensional to produce hoses. After the production of recycled mandrel mechanical tensile and hardness were performed both in the natural and recycled mandrel to compare them. It was observed that recycled mandrel presents the tensile properties and hardness superior to natural mandrel. Thus, this work will directly impact the company`s business ultimately reducing costs, reducing waste and reducing environmental impacts
Resumo:
The present study aimed to analyze how develops the reverse logistics process applied in electrical and electronic products. Such analysis was obtained through literature search and with the completion of a case study, which was developed at the company's Oxil Reverse Manufacture, showing the advantages obtained as well as the difficulties faced in the implementation of the reverse logistics process. The development of this research shows its importance in so far as the residues generated by electronic components, which are one of the most harmful to the environment and harmful to human health, highly possessing heavy metals and non-biodegradable materials in their composition. In this way, the components collected from this activity, should be properly recycled, reused and finally housed in suitable location, these steps that are part of the reverse logistics process
Resumo:
In this work polystyrene composites reinforced with recycled sisal fibers were processed, in order to apply in the manufacture of printed circuit boards. A thermoplastic matrix of recycled polystyrene was used, this material came from waste expanded polystyrene (EPS) used in appliance's packages. Composites were prepared with 15% and 25% of sisal fibers. To obtain the composites, wasted EPS and natural sisal fibers were chosen, to encourage recycling and reuse of household waste and also the use of renewable resources. The composites were analyzed by standard tensile and flexural test, in order to verify the mechanical properties of the material. The characterization of the composite was done by scanning electron microscopy (SEM) , thermogravimetry (TGA / DTG) , differential scanning calorimetry (DSC) and dielectric analysis . The analysis of the results showed that the percentage of fibers in the composite influences directly the thermal and mechanical properties. Plates with a lower percentage of fibers showed superior properties at a higher percentage. The composite material obtained is easy to process and it's use is feasible for the confection of printed circuit boards, considering it's mechanical, thermal and insulative properties
Resumo:
The waste, exaggerated and incorrect disposal of biomass are common practices in modern times where everything is disposable. However the growing concern with the nature and the environment compel man to give nobler destinations for these products through sustainability and recycling of waste. Banana peel is a residual biomass, which is not consumed. It generates tons of waste per week in São Paulo city. This trash is disposed in dumps and landfills, which could be reduced by using it as reinforcement in natural composites. The high density polyethylene (HDPE) is a polymer derived from the ethylene polymerization and is easily recycled. Which makes it a sustainable material. In the present work characteristics of the natural composite composed with banana peel and high-density polyethylene were studied. It was noted that removing the lignin present in the banana peel, the fiber introduces a significant improvement in thermal resistance. The preparation of composite was made with a ratio of 5% and 10% of reinforcement in comparison with polymeric matrix mass. Composites were thermally, mechanically and microscopically characterized. The addition of fiber in the polymer increased the mechanical strength of the composite. The fiber surface treatment with distilled water removed the amorphous material present in the fibers, improving significantly thermal stability and increasing crystallinity of the celullose. The addition of 5% fiber in mass to the polymer increased significantly the tensile strength and elasticity modulus for the composite. With 10% of fiber addiction there were also an improvement when compared with pure HDPE, but when compared with 5% composite the mechanical properties are slightly lower. This may be due to the fiber particle size, which are small and eventually become a hub of tension ... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A(2A) receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [H-3]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A(2A) receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (03 mM)-induced transmitter release facilitation, because its effect was prevented by the A(2A) receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M-1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M-2 and Al receptors blocked by methoctramine (0.1 mu M) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A(2A) receptors by endogenous adenosine leading to synaptic vesicle redistribution. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Automotive heat shields are usually composed of two metal sheets enclosing an insulating material with a paper-like texture that contains refractory ceramic particles. This article discusses the results achieved by recycling the scrap automotive insulation that is discarded in landfills, using the same concept as paper recycling. For comparison with the original product, tests of thickness, bulk density, weight loss on ignition, tensile strength, compressibility, and recovery were performed on recycled materials produced in a so-called "manual" process (involving little automation and performed in adapted facilities) without pressing, and pressed once, twice, and four times. Materials recycled in a so-called "industrial" process (in a paper recycling plant) without pressing, and pressed once were also tested. The recycled materials can be considered approved with respect to the main requirement, thermal insulation, since they dissipated the under-hood temperature by more than 300 A degrees C (like the original product). Like the heat insulation tests, the thermogravimetric analysis suggested that the recycled materials showed higher stability than the original product. Thermogravimetric, microscopy, and energy dispersive spectroscopy analyses indicated that the structural and compositional characteristics of the original product were preserved after recycling.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The recycling in Engineering can be used for reuse of material disposed remains into the environment. The recycling of construction residues comes from antique and was applied in the reconstruction of Europe after World War II. From the environmental point of view, the main problem with the residues that can be recycled, is related to its irregular deposition and the large volumes produced. In this article we aim to approach the recycling techniques through literature surveys and propose techno-artistic works that solve the problem of wasting residues in our planet.
Resumo:
In this research the aim was produce and evaluate a plastic composite using recycled polypropylene (PP) and fibers from sugarcane bagasse residues (SC), without the use of additives. This analysis was based on laboratorial tests for physical and mechanical characterization, according to the standards ASTM D256-00, D638-101 and D570-98 were analyzed: water absorption, thickness swelling, impact resistance, tensile strength and its correspondent deformation. For comparison it was elaborated three different compositions: 100% PP; 80% PP+20%SC; 70%PP+30%SC. The results indicate a positive correlation with the content of fiber and water absorption and thickness swelling. In the tension tests, the composites with fibers increase the value of resistance for physical efforts, bringing advantages as durability and integrity of the material, showing a viability of the composites.
Resumo:
In this research the aim was produce and evaluate a plastic composite using recycled polypropylene (PP) and fibers from sugarcane bagasse residues (SC), without the use of additives. This analysis was based on laboratorial tests for physical and mechanical characterization, according to the standards ASTM D256-00, D638-101 and D570-98 were analyzed: water absorption, thickness swelling, impact resistance, tensile strength and its correspondent deformation. For comparison it was elaborated three different compositions: 100% PP; 80% PP+20%SC; 70%PP+30%SC. The results indicate a positive correlation with the content of fiber and water absorption and thickness swelling. In the tension tests, the composites with fibers increase the value of resistance for physical efforts, bringing advantages as durability and integrity of the material, showing a viability of the composites.
Resumo:
This work deals with the continuation of Scientific Initiation research initiated by Tamura (2012), which draws up a mixture of soil and recycled aggregate analysis for paving of low traffic volume roads using local materials from the Vale do Paraíba region. The main steps of the process were the soil and recycled aggregate characterization, along with grading tests and California Bearing Ratio (CBR) applied to the soil, the recycled aggregate and the mixture of soil and recycled aggregate; aiming their use as base and sub-base in paving urban roads. The results are discussed, emphasizing the mechanical behavior. The current results are compared with the results of IC Tamura research, taking decisions over this job to the final product best result. For a greater understanding of the work in general were described paving, its structure, its components and its physical behavior. It has been intended to emphasize the importance of the mixture of soil and recycled aggregate to meet the quality requirements and compliance with the specifications of current technical standards, in the context of durability, natural materials economy, decreases volume in landfills and cost reduction
Resumo:
Two of the major problems caused by construction activity are the production of construction and demolition waste (CDW) and the exploitation of mineral resources, causing big impacts on the environment. Therefore, the recycling has been shown as an alternative to mitigate the harmful effects of waste on the urban environment and prevent the exploitation of new raw materials. This course work aims to study the behavior of recycled aggregates from Vale do Paraíba in concrete and mortar. Initially, it presents the definitions of recycled aggregates according to CONAMA Resolution No. 307/2002, the aggregate settings for concrete and mortar (such as the grain size, its origin and density, and the characterization parameters according to ABNT), and the definition of ACI method of concrete mix design. Afterwards, it presents the characterization of materials separated by assays. After that, it shows the theoretical concrete proportioning applying the ACI method and experimental concrete proportioning. Then, the analysis of results is performed to finally conclude that the materials provided can't be used to replace natural aggregates because they cannot have the same performance. With the studies, it could be observed that the recycled aggregate presents a great complexity and diversity in origin, therefore the form how the material should be handled requires great care