149 resultados para RMS roughnesses
Resumo:
This study aims at quantifying through electromyography the actions of the biceps brachii-BB (long head), tríceps brachii- TB (long head) and deltoideus-DA (clavicular portion) muscles, during the going (G) and return (R) phases in back support exercises. Surface electrodes were placed at the muscles, according to DELAGI (1981). It was used a specific software and a AID plate to take the signals. After being collected, the records were processed resulting in efficient values (RMS), were normalized by maximum isometric contraction (MVIC=100%) and statistically analysed using the Friedman, DSM and Wilcox non-parametric tests. All the muscles presented electromyographic activity of the movements. The triceps brachii was the muscle with higher activity in both phases of the movement. It was concluded that the exercise is indicated for the arm muscle strength development.
Resumo:
We often face Patients searching for rehabilitation for lower back disorders during the physiotherapeutic routine, and it is known that the abdominal muscle, specially the rectus abdominis muscle, aid the stabilization of the pelvis. Therefore, this paper analyzes the electrical activity of the rectus abdominis muscle in the pelvic retroversion in dorsal decubitus and in orthostatic position and in the lowering of the lower limbs. 30 healthy students, male and female, 17-40 yr, divided into two groups - Group 1: 15 volunteers (pelvic balance); Group 2 (pelvic unbalance) took part in this study. The electrical activity of the right and left supra-umbilical and infra-umbilical portions of the rectus abdominis muscle was detected. The mean RMS values from three attempts ftom the electromyographic traces were usedfor the analysis of the electrical activity. The RMS value was submitted to the normalization process. The data were submitted to statistic treatment by the Friedman test, and the analyses of the means and standard deviation towards a level of significance of 95%. The results demonstrated that the portions of the rectus abdominis muscle presented low electrical activity for the groups studiedfor pelvic retroversion either in dorsal decubitus or and orthostatic position. However, the decreasing movement of the lower limbs towards the portions of the rectus abdominis muscle presented more significant electrical activity whereas the lower portions presented higher activity than the higher ones for Group 2.
Resumo:
The aim of this study was to determine the time to restore the biceps brachii (BB) electromyographic (EMG) activity after the biceps curl (BC) exercise, at different intensities. Ten males performed initially maximal voluntary isometric contractions (MVC) of the elbow flexors, followed by one isometric submaximal contraction at 50% MVC (reference contraction). After this, four bouts of the BC at 25%, 30%, 35%, and 40% 1 RM during 1 minute (randomly assigned, with 10 minutes rest between them) were performed. During the rest intervals at preestablished moments (15 seconds, 1, 3, 5, and 10 min), isometric 50% MVC were performed. The EMG variables (root mean square [RMS], zero crossings [ZC], median frequency, [MF] and peak power [PP]) at rest were compared with reference values. Immediately after the exercise, RMS and PP increased, while ZC and MF decreased, indicating fatigue. After 1 minute most of the variables were similar to the reference. Different load levels did not affect the EMG recovery. In conclusion, the EMG variables recovered after 1 minute rest, indicating the optimal muscular condition for subsequent bouts. Copyright © Taylor & Francis Group, LLC.
Resumo:
The present study aimed at analyzing and comparing longitudinally the EMG (electromyographic activity) of the superior orbicularis oris muscle according to the breathing mode. The sample, 38 adolescents with Angle Class II Division 1 malocclusion with predominantly nose (PNB) or mouth (PMB) breathing, was evaluated at two different periods, with a two-year interval between them. For that purpose, a 16-channel electromyography machine was employed, which was properly calibrated in a PC equipped with an analogue-digital converter, with utilization of surface, passive and bipolar electrodes. The RMS data (root mean square) were collected at rest and in 12 movements and normalized according to time and amplitude, by the peak value of EMG, in order to allow comparisons between subjects and between periods. Comparison of the muscle function of PNB and PMB subjects at period 1 (P1), period 2 (P2) and the variation between periods (Δ) did not reveal statistically significant differences between groups (p < 0.05). However, longitudinal evaluation of the muscle function in PNB and PMB subjects demonstrated different evolutions in the percentage of required EMG for accomplishment of the movements investigated. It was possible to conclude that there are differences in the percentage of electric activity of the upper lip with the growth of the subjects according to the breathing mode.
Resumo:
This paper describes the design and development of a high input power-factor (HPF) AC to AC converter for naval applications using Permanent Magnet Generator (PMG). The proposed converter comprises an isolated three-phase uncontrolled multipulse rectification stage directly connected to a single-phase inverter stage, without the use of DC to DC intermediary stage, resulting in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and input currents with low total harmonic distortion (THD). The output voltage of the PMG varies from 260V rms (220 Hz) to 380V rms (360 Hz), depending on load conditions. The output single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120V rms, 60 Hz output. Measured total harmonic distortion for the AC output voltage represents less than 2%, at 3.6kW nominal linear load. © 2010 IEEE.
Resumo:
Alteration of the occlusion and the position of the jaw can affect the muscles of the neck, due to a relationship between the masticatory and cervical systems. Thus, the objective of this study was to verify whether the bite in maximal clenching effort, in centric occlusion, in individuals with clinically normal occlusion, and without a history of dysfunction in the masticatory system, influences the electromyographic activity of the upper trapezius muscle. A total of 19 normal individuals participated in the study, 14 of which were women (average age of 25.4 ± 4.14 years), and 5 were men (average age of 24.11 ± 3.28 years). The root mean square (RMS) amplitude and median frequency (MF) of the upper trapezium muscle with 40% and 60% of maximal voluntary contraction were analyzed under pre- and post-maximal clenching effort conditions in centric occlusion. The electromyographic signal was collected with a sampling frequency of 2. kHz and the value in RMS was obtained by a moving window of 200. ms. The paired Student's t-test was used to compare RMS amplitude and MF under pre- and post-maximal clenching effort conditions. The level of significance for each comparison was set to p<0.05. This study concluded that in individuals without a history of dysfunction of the masticatory system, maximum clenching effort in centric occlusion does not alter the electromyographic signal of the upper trapezius. © 2009 Elsevier Ltd.
Resumo:
The CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3-4 microns RMS in the barrel and 3-14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
Purpose. Fatigue has been pointed as a fall risk in the elderly; however, the effects of prolonged gait on neuromuscular recruitment and on its pattern remain unknown. The aim of this study was to evaluate the effects of prolonged gait on neuromuscular recruitment levels and spatial-temporal gait variables. Methods. Eight healthy older women (age: 72.63 ± 6.55 years) walked at their preferred walking speed for twenty minutes on a treadmill. The Root Mean Square (RMS) from the vastus-lateralis, femoral biceps, tibialis anterior and lateral gastrocnemius muscles were determined at the first and last minute of the test during the moments of Heel Strike (HS), Terminal Stance and Terminal Swing (TS). In addition, coactivation in the knee and ankle as well as the stride cadence and length were measured in the test. The two RMS data (taken at the first and last minute) were compared by means of a Student's t-test. Results. Twenty minutes of walking induced fatigue in the subjects, as observed through an increase in RMS, notably during the HS and TS. Coactivation was also influenced by the prolonged gait test. The only gait phase where a risk of falling was enhanced was the HS. Nonetheless, subjects developed strategies to maintain a safe motor pattern, which was evidenced by an increase in stride length and a decrease in stride cadence. Conclusion. Tests lasting just twenty minutes on a treadmill were enough to induce fatigue in older adults. However, the level of fatigue was not enough to present a danger or fall risk to elderly individuals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bruxism is widely defined as an anxiety response to environmental stress. Occlusal splints are frequently used in sleep bruxism, to protect teeth from damage resulting from the contraction force of mandibular muscles, or to reduce the orofacial pain by relaxing masticatory muscles. Surface electromyography (EMG) of the right and left masseter and temporalis muscles was performed in 15 women presenting sleep bruxism and temporomandibular disorders related to occupational stress, after nocturnal use of the occlusal splint. The EMG signals were recorded twice per patient: After a work shift (pre-splint) and after a night of sleep with the occlusal splint (post-splint) before a new workday. The parametric t-paired test was used to compare differences of the RMS amplitude between pre and post-splint records, for resting and maximal clenching effort. The level of significance for each comparison was set to p < 0.05. The results of the study supports the premise that the use of occlusal splint reduces EMG activity in the masseter and anterior temporalis muscles, in patients who presented with sleep bruxism related to occupational stress. © 2011 Elsevier Ltd.
Resumo:
Electrochemical impedance spectroscopy measurements using two carbon steel electrodes in soybean biodiesel medium, produced by methylic route, were performed in an electrochemical cell that allows positioning the two electrodes face-to-face. To retain the biodiesel between the electrodes and prevent its leakage a porous membrane soaked in biodiesel was used. The amplitude of the AC potential and the area of the electrodes were varied. The linearity between disturbance and response signals was observed for tests when the amplitude of the AC potential was lower than 1500 mV (rms). The electrical resistance of biodiesel dominates the global response and carbon steel presents low corrosion, which is observed only at low frequency, and was confirmed by chemical tests performed in the membrane. In conclusion the electrical resistance of biodiesel can be estimated using electrochemical impedance spectroscopy with two electrodes set up. ©The Electrochemical Society.
Resumo:
This study aimed to analyze the electromyographic (EMG) activity of iliocostalis lumborum (IL), internal oblique (IO) and multifidus (MU) and the antagonist cocontraction (IO/MU and IO/IL) during the performance of Centering Principle of Pilates Method. Participating in this study were eighteen young and physically fit volunteers, without experience in Pilates Method, divided in two groups: low back pain group (LBPG, n = 8) and control group (CG, n = 10). Two isometric contractions of IO muscles (Centering Principle) were performed in upright sitting posture. EMG signal amplitude was calculated by Root Mean Square (RMS), which was normalized by RMS maximum value. The common area method to calculate the antagonist cocontraction index was used. MU and IO activation and IO/MU cocontraction (. p < 0.05) were higher in CG. The CG therefore showed a higher stabilizer muscles recruitment than LBPG during the performance of Centering Principle of Pilates Method. © 2012 Elsevier Ltd.
Resumo:
Poor posture control has been associated with an increased risk of falls and mobility disability among older adults. This study was conducted to assess the test-retest reliability and sensitivity to group differences regarding the time-limit (TLimit) of one-leg standing and selected balance parameters obtained with a force platform in older and young adults. A secondary purpose was to assess the relationship between TLimit and these balance parameters. Twenty-eight healthy older adults (age: 69±5years) and thirty young adults (age: 21±4years) participated in this study. Two one-leg stance tasks were performed: (1) three trials of 30s maximum and (2) one TLimit trial. The following balance parameters were computed: center of pressure area, RMS sway amplitude, and mean velocity and mean frequency in both the anterio-posterior and medio-lateral directions. All balance parameters obtained with the force platform as well as the TLimit variable were sensitive to differences in balance performance between older and young adults. The test-retest reliability of these measures was found to be acceptable (ICC: 0.40-0.85), with better ICC scores observed for mean velocity and mean frequency in the older group. Pearson correlations coefficients (r) between balance parameters and TLimit ranged from -0.16 to -0.54. These results add to the current literature that can be used in the development of measurement tools for evaluating balance in older and young adults. © 2013 Elsevier Ltd.
Resumo:
Eumelanin pigments show hydration-dependent conductivity, broad-band UV-vis absorption, and chelation of metal ions. Solution-processing of synthetic eumelanins opens new possibilities for the characterization of eumelanin in thin film form and its integration into bioelectronic devices. We investigate the effect of different synthesis routes and processing solvents on the growth, the morphology, and the chemical composition of eumelanin thin films using atomic force microscopy and X-ray photoelectron spectroscopy. We further characterize the films by transient electrical current measurements obtained at 50% to 90% relative humidity, relevant for bioelectronic applications. We show that the use of dimethyl sulfoxide is preferable over ammonia solution as processing solvent, yielding homogeneous films with surface roughnesses below 0.5 nm and a chemical composition in agreement with the eumelanin molecular structure. These eumelanin films grow in a quasi layer-by-layer mode, each layer being composed of nanoaggregates, 1-2 nm high, 10-30 nm large. The transient electrical measurements using a planar two-electrode device suggest that there are two contributions to the current, electronic and ionic, the latter being increasingly dominant at higher hydration, and point to the importance of time-dependent electrical characterization of eumelanin films. This journal is © 2013 The Royal Society of Chemistry.
Resumo:
Grinding is a workpiece finishing process for advanced products and surfaces. However, the constant friction between workpiece and grinding wheel causes the latter to lose its sharpness, thereby impairing the result of the grinding process. When this occurs, the dressing process is essential to sharpen the worn grains of the grinding wheel. The dressing conditions strongly influence the performance of the grinding operation; hence, monitoring them throughout the process can increase its efficiency. The purpose of this study was to classify the wear condition of a single-point dresser using intelligent systems whose inputs were obtained by digitally processing acoustic emission signals. Two multilayer perceptron (MLP) neural networks were compared for their classification ability, one using the root mean square (RMS) statistics and another the ratio of power (ROP) statistics as input. In this study, it was found that the harmonic content of the acoustic emission signal is influenced by the condition of the dresser, and that the condition of the tool under study can be classified by using the aforementioned statistics to feed a neural network. © IFAC.