75 resultados para Pulsed laser applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoassociation is a possible route for the formation of chemical bonds. In this process, the binding of colliding atoms can be induced by means of a laser field. Photoassociation has been studied in the ultracold regime and also with temperatures well above millikelvins in the thermal energy domain, which is a situation commonly encountered in the laboratory. A photoassociation mechanism can be envisioned based on the use of infrared pulses to drive a transition from free colliding atoms on the electronic ground state to form a molecule directly on that state. This work takes a step in this direction, investigating the laser-pulse-driven formation of heteronuclear diatomic molecules in a thermal gas of atoms including rotational effects. Based on the assumption of full system controllability, the maximum possible photoassociation yield is deduced. The photoassociation probability is calculated as a function of the laser parameters for different temperatures. Additionally, the photoassociation yield induced by subpicosecond pulses of a priori fixed shape is compared to the maximum possible yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to evaluate the corrosion resistance of AuPdAgIn alloy, submitted to laser beam welding, in 0.9% NaCl solution, using electrochemical techniques. Measures of the open circuit potential (OCP) versus time were applied to electrochemical experiments, as well as potentiodynamic direct scanning (PDS) and electrochemical impedance spectroscopy (EIS) on AuPdAgIn alloy, submitted to laser beam welding in 0.9% NaCl solution. Some differences observed in the microstructure can explain the results obtained for corrosion potential, Ecorr, and corrosion resistance, Rp. EIS spectra have been characterized by distorted capacitive components, presenting linear impedance at low frequencies, including a non-uniform diffusion. The area of the laser weld presented corrosion potential slightly superior when compared to the one of the base metal. The impedance results suggest the best resistant corrosion behavior for laser weld than base metal region. This welding process is a promising alternative to dental prostheses casting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium has proven its suitability as an implant material in surgery over many years. Excellent biocompatibility and corrosion resistance are outstanding features. Implant surfaces always causes concern and interest in scientific communities, due to its close relationship with the time required for osseointegration. Surface modification can be performed by several methods, being laser irradiation one of them. Titanium implants with two different surfaces were inserted in rabbits: Group I (G-I: machined surface, control group), and group II (G-II: laser irradiated, test group) being processed 30 and 60 days after surgery for histological analysis. Surface characterization was performed with SEM-EDS, contact angle measurement, and mean roughness (Ra) parameters. Surface analysis in the GII group showed a nanomorphology affected by melt and quick solidification zones following laser irradiation (SEM), as well as total wettability and Ra mean values significantly higher than in the G-I group. The laser treatment resulted in a homogenized, porous surface, with increased surface area and volume. Histological analysis of bone-implant contact linear extension (BIC) showed better results in G-II at 30 days (39.26 ± 18.23 and 68.41 ± 13.68 for G-I and G-II groups, respectively). Titanium implants modified by laser irradiation showed important features that may accelerate early osseointegration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n=10); Injured (I, n=10) and Injured and laser treated (Injured/LLLT, n=10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904nm, 50mW average power) were initiated 24h after injury, at energy density of 69Jcm(-1) for 48s, for 5days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-, TGF-, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P<0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF- and myogenin compared to the injured group (P<0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG