147 resultados para Pulmonary Surfactants
Resumo:
Adult Swiss (susceptible) and BALB/c (non-susceptible) mice were inoculated by the intravenous route with 1 x 10(6) yeast cells of Paracoccidioides brasiliensis, strain 18. Immunologic parameters, histopathology and features of the bronchoalveolar lavage (BAL) were evaluated at week 2, 4, 8 and 16 post-infection. The pulmonary infection was progressive in Swiss mice and regressive in BALB/c mice. The numbers of total cells, lymphocytes and polymorphonuclear neutrophils increased in BAL, as well as the percentages of giant cells, and CD4 and CD8 positive cells. The ultrastructural study of BAL cells revealed a predominance of macrophages and a frequency of 13.2% of type II pneumocytes. As the infection progressed, the number of fungal cells and spreading macrophages, as well as the stimulated release of H2O2 by macrophages, increased. The animals exhibited an exacerbation of the humoral immune response and a depression of cellular immunity during the infection. There was a good correlation between the intensity and the pattern of the pulmonary histopathology and the cellular findings in the BAL. The present model reproduces some anatomoclinical patterns of the human disease and shows that BAL may be a useful tool in monitoring the pulmonary infection caused by P. brasiliensis.
Resumo:
The incidence of tuberculosis and other infections by mycobacteria was analyzed in 559 patients admitted to the Tisiology Section of the Special Health Care Unit of Araraquara (SESA). Mycobacteria were isolated from 78 individuals out of this total. Among these patients, 15 were also HIV positive. The occurrence of isolated species was: M. tuberculosis: 69 patients; M. avium-intracellulare: 5 patients; M. fortuitum: 2 patients; M. chelonae: 1 patient; and M. simiae 1 patient. The latter was for the first time isolated from humans in Brazil. In most cases, non tubercular mycobacteria (NTM) were found in the HIV positive patients.
Resumo:
We have used a pharmacological approach to study the mechanisms underlying the rat lung injury and the airway reactivity changes induced by inhalation of formaldehyde (FA) (1% formalin solution, 90 min once a day, 4 days). The reactivity of isolated tracheae and intrapulmonary bronchi were assessed in dose-response curves to methacholine (MCh). Local and systemic inflammatory phenomena were evaluated in terms of leukocyte countings in bronchoalveolar lavage (BAL) fluid, blood, bone marrow lavage and spleen. Whereas the tracheal reactivity to MCh did not change, a significant bronchial hyporesponsiveness (BHR) was found after FA inhalation as compared with naive rats. Also, FA exposure significantly increased the total cell numbers in BAL, in peripheral blood and in the spleen, but did not modify the counts in bone marrow. Capsaicin hindered the increase of leukocyte number recovered in BAL fluid after FA exposure. Both compound 48/80 and indomethacin were able to prevent the lung neutrophil influx after FA, but indomethacin had no effect on that of mononuclear cells. Following FA inhalation, the treatment with sodium cromoglycate (SCG), but not with the nitric oxide (NO) synthase inhibitor L-NAME, significantly reduced the total cell number in BAL. Compound 48/80, L-NAME and SCG significantly prevented BHR to MCh after FA inhalation, whereas capsaicin was inactive in this regard. on the other hand, indomethacin exacerbated BHR. These data suggest that after FA inhalation, the resulting lung leukocyte influx and BHR may involve nitric oxide, airway sensory fibers and mast cell-derived mediators. The effect of NO seemed to be largely restricted to the bronchial tonus, whereas neuropeptides appeared to be linked to the inflammatory response, therefore indicating that the mechanisms responsible for the changes of airway responsiveness caused by FA may be separate from those underlying its inflammatory lung effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A DNA vaccine based on the heat-shock protein 65 Mycobacterium leprae gene (pHSP65) presented a prophylactic and therapeutic effect in an experimental model of tuberculosis. In this paper, we addressed the question of which protective mechanisms are activated in Mycobacterium tuberculosis-infected mice after immune therapy with pHSP65. We evaluated activation of the cellular immune response in the lungs of infected mice 30 days after infection (initiation of immune therapy) and in those of uninfected mice. After 70 days (end of immune therapy), the immune responses of infected untreated mice, infected pHSP65-treated mice and infected pCDNA3-treated mice were also evaluated. Our results show that the most significant effect of pHSP65 was the stimulation of CD8(+) lung cell activation, interferon-gamma recovery and reduction of lung injury. There was also partial restoration of the production of tumour necrosis factor-alpha. Treatment with pcDNA3 vector also induced an immune stimulatory effect. However, only infected pHSP65-treated mice were able to produce significant levels of interferon-gamma and to restrict the growth of bacilli.
Resumo:
Low O-2 levels in the lungs of birds and mammals cause constriction of the pulmonary vasculature that elevates resistance to pulmonary blood flow and increases pulmonary blood pressure. This hypoxic pulmonary vasoconstriction (HPV) diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts and is considered important for the local matching of ventilation to blood perfusion. In the present study, the effects of acute hypoxia on pulmonary and systemic blood flows and pressures were measured in four species of anesthetized reptiles with diverse lung structures and heart morphologies: varanid lizards (Varanus exanthematicus), caimans (Caiman latirostris), rattlesnakes (Crotalus durissus), and tegu lizards (Tupinambis merianae). As previously shown in turtles, hypoxia causes a reversible constriction of the pulmonary vasculature in varanids and caimans, decreasing pulmonary vascular conductance by 37 and 31%, respectively. These three species possess complex multicameral lungs, and it is likely that HPV would aid to secure ventilation-perfusion homogeneity. There was no HPV in rattlesnakes, which have structurally simple lungs where local ventilation-perfusion inhomogeneities are less likely to occur. However, tegu lizards, which also have simple unicameral lungs, did exhibit HPV, decreasing pulmonary vascular conductance by 32%, albeit at a lower threshold than varanids and caimans (6.2 kPa oxygen in inspired air vs. 8.2 and 13.9 kPa, respectively). Although these observations suggest that HPV is more pronounced in species with complex lungs and functionally divided hearts, it is also clear that other components are involved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)