187 resultados para Polymeric Matrices
Resumo:
In this work we report the synthesis procedure, crystallographic, structural and magnetic properties of the Li2ZnTi3O8 spinel obtained using a modified polymeric precursor method. This synthesis method generates very reactive and property-controlled nanoparticles. The samples were characterized using X-ray powder diffraction (XRD) associated to the Rietveld refinement method, thermogravimetric analysis (TG), specific surface area, scanning electron microscopy (SEM) and magnetic susceptibility measurements.The phase formation temperature of the lithium zinc titanate spinel was observed to decrease due to the homogeneity and highly controlled nanometric particle size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Immunochemical methods have increased considerably in the past years, and many examples of small and large scale studies have demonstrated the reliability of the immunotechniques for control and monitoring gf contaminant residues in different kinds of samples. Application of the immunoassay (IA) methods in pesticide residue control is an area with enormous potential for growth. The most extensively studied IA is the enzyme-linked absorbent assay (ELISA), but several other approaches, that include radioimmunoassay and immunoaffinity chromatography, have been also developed recently. In comparison with classical analytical methods, IA methods offer the possibility of highly sensitive, relatively vapid, and cost-effective measurements. This paper introduces the general IAs used until now, focusing on their use in pesticide analysis, and discussing briefly the effects of interferences from solvent residues or matrix components on the IA performance. Numerous immunochemical methods commonly used for pesticide determination in different samples such as food, crop and environmental samples are presented.
Resumo:
Pure and lanthanum-doped Bi4Ti3O12 thin films were deposited on Pt/Ti/SiO2/Si substrate using a polymeric precursor solution. The spin-coated films were specular and crack-free and crystalline after annealing at 700 degreesC for 2 h. Crystallinity and morphological evaluation were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Multilayered films obtained using the intermediate-crystalline layer route present a dense microstructure with spherical grains. Films obtained using the intermediate-amorphous layer, present elongated grains around 250 nm in size. The dielectric and ferroelectric properties of the lanthanum-doped Bi4Ti3O12 films are strongly affected by the crystallization route. The hysteresis loops are fully saturated with a remnant polarization and drive voltage of the films, heat-treated by the intermediate-crystalline (P-r = 20.2 muC/cm(2) and V = 1.35 V) and for the film heat-treated by amorphous route (P-r = 22.4 muC/cm(2) and V = 2.99 V). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Thin films of potassium niobate were deposited on MgO (100) substrates by the polymeric precursor method and annealing in static air at 600 degreesC for 20 h. The obtained films were characterized by X-ray diffraction, atomic force microscopy (AFM) and the prism coupling method. The phi-scan diffraction evidenced the growth of the films with fourfold symmetry. AFM study shows that the films are homogeneous, dense and present a smooth surface. The refractive index and optical losses were strongly influenced by the degree of crystallinity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Lanthanum-doped Bi4Ti3O12 thin films (BLT) were deposited on Pt/Ti/SiO2/Si substrates using a polymeric precursor solution. The spin-coated films were specular, crack-free and crystalline after annealing at 700 degrees C for 2 h. Crystallinity and morphological evaluation were examined by X ray diffraction (YRD) and atomic force microscopy (AFM). The stability of the formed complex is of extreme importance for the formation of the perovskite phase. Films obtained from acid pH solution present elongated grains around 200 ran in size, whereas films obtained from basic solution present a dense microstructure with spherical grains (100 nm). The dielectric and ferroelectric properties of the BLT films are strongly affected by the solution pH. The hysteresis loops are fully saturated with a remnant polarization and coercive voltage of P-r=20.2 mu C/cm(2) and V-c = 1.35 V and P-r= 15 mu C/cm(2) and V-c = 1.69 V for the films obtained from basic and acid solutions, respectively. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Strontium titanate (SrTiO3) thin films were prepared by dip-coating Si(111) single-crystal substrates in citrate solutions of ethylene glycol, considering several citric acid/ethylene glycol (CA/EG) ratios. Measurements of intrinsic viscosity indicate that increasing the amount of EG increases the precursors' polymeric chains and increases the weight loss. After deposition the substrates were dried on a hotplate (approximate to 150 degrees C); this was followed by heat treatment at temperatures ranging from 500 to 700 degrees C using heating and cooling rates of 1 degrees C min(-1). SEM and optical microscopy investigations of the sintered films obtained from different CA/EG ratios indicate that there is a critical thickness above which the films present cracks. This critical thickness for SrTiO3 films deposited on the Si(111) substrate is about 150 nm, Measurements of crack spacing as a function of film thickness indicate that the origin of cracks cannot be explained by the elastic behavior of the film but rather by the viscoelastic relaxation of the film during pyrolysis and sintering. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films were grown on a RuO2 top electrode deposited on a (100) SiO2/Si substrate by the polymeric precursor method. X-ray diffraction and atomic force microscope investigations indicate that the films exhibit a dense, well crystallized microstructure having random orientations with a rather smooth surface morphology. The electrical properties of preferred oriented Bi3.25La0.75Ti3O12 (BLT) thin films deposited on RuO2 bottom electrode leaded to a large remnant polarization (P-r ) of 17.2 mu C/cm(2) and (V-c ) of 1.8 V, fatigue free characteristics up to 10(10) switching cycles and a current density of 2.2 mu A/cm(2) at 5 V. We found that the polarization loss is insignificant with nine write/read voltages at a waiting time of 10,000 s. Independently of the applied electric field the retained switchable polarization approached a nearly steady-state value after a retention time of 10 s.
Resumo:
Zirconia-ceria powders with ceria concentration varying from 0 to 12 mol% were synthesized using a polymeric precursor route based on the Pechini process. Powder characteristics were evaluated with regard to the crystallite size, BET surface area, phase distribution, nitrogen adsorption/desorption behavior, and agglomeration state. Sintering was studied considering the shrinkage rate, densification, grain size, and phase evolution. It was demonstrated that the synthesis method is effective to prepare nanosized powders of tetragonal zirconia single-phase. Sinterability mainly depended on the agglomeration state of powders and the monoclinic phase content, fully tetragonal zirconia ceramic, with grain size of 2.4 mu m, was obtained after addition of at least 9 mol% ceria and sintering at 1500 degrees C for 4 h. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The polymeric precursor method was used to prepare multi-layered LiNbO3 films. The overall process consists of preparing a coating solution from the Pechini process and the deposited film is subsequently heat-treated. Two-layered films were prepared by this process, onto (0001) sapphire substrates. Two different routes were investigated for the heat-treatment. The amorphous route consisted of performing, after each deposition, a pre-treatment at low temperature to eliminate the organic material. In this case, the crystallization heat-treatment was performed only after the two layers had been deposited. on the other hand, a process layer-after-layer crystallization was used. Both routes led to (0001) LiNbO3 oriented films. However, only the film prepared by the layer-after-layer crystallization presented an epitaxial growth and a crack-free morphology. Moreover, the layer-after-layer crystallization process led to a film exhibiting the best optical properties. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The polymeric precursor method was employed in the preparation of PZT thin films on Pt(111)Ti/SiO2/Si(100) substrates. X-ray diffraction patterns revealed the polycrystalline nature of the PZT (53:47) thin films, which had a granular structure and a grain size of approximately 70 nm. A 350-nm thick film was obtained by running three cycles of the dip-coating/heating process. Atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness (= 2.0 nm). The PZT (53:47) thin films annealed at 700 degreesC showed a well-saturated hysteresis loop. The C-V curves of perovskite thin film displayed normal ferroelectric behavior, while the remanent polarization (2P(r)) and coercive field (E-e) of the film deposited and measured at room temperature were 40 muC/cm(2) and 110 kV/cm, respectively. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Hybrid organic - inorganic nanocomposites doped with Fe-II and Fe-III ions and exhibiting interesting magnetic properties have been obtained by the sol - gel process. The hybrid matrix of these ormosils ( organically modified silicates), classed as di-ureasils and termed U( 2000), is composed of poly( oxyethylene) chains of variable length grafted to siloxane groups by means of urea crosslinkages. Iron perchlorate and iron nitrate were incorporated in the diureasil matrices, leading to compositions within the range 80 greater than or equal to n greater than or equal to 10, n being the molar ratio of ether-type O atoms per cation. The structure of the doped diureasils was investigated by small-angle X-ray scattering (SAXS). For Fe-II-doped samples, SAXS results suggest the existence of a two-level hierarchical structure. The primary level is composed of spatially correlated siloxane clusters embedded in the polymeric matrix and the secondary, coarser level consists of domains where the siloxane clusters are segregated. The structure of Fe-III-doped hybrids is different, revealing the existence of iron oxide based nanoclusters, identified as ferrihydrite by wide-angle X-ray diffraction, dispersed in the hybrid matrix. The magnetic susceptibility of these materials was determined by zero-field-cooling and field-cooling procedures as functions of both temperature and field. The different magnetic features between Fe-II- and Fe-III-doped samples are consistent with the structural differences revealed by SAXS. While Fe-II-doped composites exhibit a paramagnetic Curie-type behaviour, hybrids containing Fe-III ions show thermal and field irreversibilities.
Resumo:
Lanthanum-modified bismuth titanate, Bi4-xLaxTi3O12 (BLT), thin films with a La concentration of 0.75 was grown on Pt/Ti/SiO2/Si substrates by using the polymeric precursor solution and spin-coating method. The scanning electron microscopy (SEM) showed rounded grains, which is not typical for these system. The BLT films showed well-saturated polarization-electric field curve which 2P(r) = 41.4 muC/cm(2) and V-c = 0.99 V. The capacitance dependence on the voltage is strongly nonlinear, confirming the ferroelectric properties of the film resulting from the domains switching. These properties make BLT a promising material for FERAM applications.
Resumo:
Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.
Resumo:
Several clean-up procedures which included the use of glass chromatography columns (silica gel, alumina, Florisil, silanized Celite-charcoal), Sep-Pak cartridges and standard solutions were compared for the determination of the following N-methylcarbamate (NMC) insecticides: aldicarb, carbaryl, carbofuran, methomyl and propoxur. According to recovery results of the compounds after elution in a glass column, the most efficient systems employed 4.6% deactivated alumina and a silanized Celite-charcoal (4:1) as adsorbents, using dichloromethane-methanol (99:1) and toluene-acetonitrile (75:25) mixtures, respectively, as binary eluents. The recoveries of the compounds studied varied from 84 to 120%. Comparable recoveries (75-100%) for Sep-Pak cartridges in normal phase (NH2, CN) and reversed phase (C-8) were observed. Different temperatures were tested during the concentration step in a rotary evaporator, and we verified a strong influence of this parameter on the stability of some compounds, such as carbofuran and carbaryl. Recovery studies employing the best clean up procedures were performed at the Brazilian agricultural level in potato and carrot samples; Validation methodology of the US Food and Drug Administration was adapted for the N-methylcarbamate analysis. Their recoveries ranged between 79 and 93% with coefficients of variation of 2.3-8%. (C) 1998 Elsevier B.V. B.V.