88 resultados para Phospholipase C
Resumo:
Crotoxin, a potent neurotoxin from the venom of the South American rattlesnake Crotalus durissus terrificus, exists as a heterodimer formed between a phospholipase A(2) and a catalytically inactive acidic phospholipase A(2) analogue (crotapotin). Large single crystals of the crotoxin complex and of the isolated subunits have been obtained. The crotoxin complex crystal belongs to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 38.2, b = 68.7, c = 84.2 angstrom, and diffracted to 1.75 angstrom resolution. The crystal of the phospholipase A(2) domain belongs to the hexagonal space group P6(1)22 (or its enantiomorph P6(5)22), with unit-cell parameters a = b = 38.7, c = 286.7 angstrom, and diffracted to 2.6 angstrom resolution. The crotapotin crystal diffracted to 2.3 angstrom resolution; however, the highly diffuse diffraction pattern did not permit unambiguous assignment of the unit-cell parameters.
Resumo:
Bothropstoxin I(BthTX-I) from the venom of Bothrops jararacussu is a myotoxic phospholipase A2 (PLA2) homologue which, although catalytically inactive due to an Asp49-->Lys substitution, disrupts the integrity of lipid membranes by a Ca2+-independent mechanism, the crystal structures of two dimeric farms of BthLTX-I which diffract X-rays eo resolutions of 3.1 and 2.1 Angstrom have been determined, the monomers in both structures are related by an almost perfect twofold axis of rotation and the dimer interfaces are defined by contacts between the N-terminal alpha-helical regions and the tips of the beta-wings of partner monomers. Significant differences in the relative orientation of the monomers in the two crystal forms results in open and closed dimer conformations, Spectroscopic Investigations of BthTX-I in solution have correlated these conformational differences with changes in the intrinsic fluorescence emission of the single tryptophan residues located at the dimer interface, the possible relevance of this structural transition in the Ca2+-independent membrane damaging activity is discussed. (C) 1998 Wiley-Liss, Inc.
Resumo:
We have used near ultraviolet photoacoustic spectroscopy (PAS) over the wavelength range 240-320 nm to investigate the complex formed between the homodimeric bothropstoxin-I, a lysine-49-phospholipase A(2) from the venom of Bothrops jararacussu (BthTx-I), with the anionic amphiphile sodium dodecyl sulfate (SDS). At molar ratios > 10, the complex developed a significant light scatter, accompanied by a decrease in the intrinsic tryptophan fluorescence intensity emission (ITFE) of the protein, and an increase in the near UV-PAS signal. Difference PAS spectroscopy at SDS/BthTx-I ratios < 8 were limited to the region 280-290 nm, suggesting initial SDS binding to the tryptophan 77 located at the dimer interface. At SDS/BthTx-I ratios > 10, the intensity between 260 and 320 nm increases demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interaction. PAS signal phase changes at wavelengths specific for each aromatic residue suggest that the Trp77 becomes more buried on SDS binding, and that protein structural changes and dehydration may alter the microenvironments of Tyr and Phe residues. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scatter is significant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The biochemical and functional characterization of wasp venom toxins is an important prerequisite for the development of new tools both for the therapy of the toxic reactions due to envenomation caused by multiple stinging accidents and also for the diagnosis and therapy of allergic reactions caused by this type of venom. PLA(1) was purified from the venom of the neotropical social wasp Polybia paulista by using molecular exclusion and cation exchange chromatographies; its amino acid sequence was determined by using automated Edman degradation and compared to the sequences of other vespid venom PLA(1)'s. The enzyme exists as a 33,961.40 da protein, which was identified as a lipase of the GX class, liprotein lipase superfamily, pancreatic lipases (ab20.3) homologous family and RP2 sub-group of phospholipase. P. paulista PLA(1) is 53-82% identical to the phospholipases from wasp species from Northern Hemisphere. The use restrained-based modeling permitted to describe the 3-D structure of the enzyme, revealing that its molecule presents 23% alpha-helix, 28% beta-sheet and 49% coil. The protein structure has the alpha/beta fold common to many lipases; the core consists of a tightly packed beta-sheet constituted of six-stranded parallel and one anti-parallel beta-strand, surrounded by four alpha-helices. P. paulista PLA(1) exhibits direct hemolytic action against washed red blood cells with activity similar to the Cobra cardiotoxin from Naja naja atra. In addition to this, PLA(1) was immunoreactive to specific IgE from the sera of P. paulista-sensitive patients. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Phospholipases A(2) (PLA(2)) are widely distributed in nature and are well characterized proteins with respect to their catalytic and pharmacological activities, A wealth of structural information has recently become available both from X-ray diffraction and NMR studies, and although a detailed model of the catalytic mechanism of PLA(2) has been proposed, the structural bases of other aspects of PLA(2) function, such as interfacial activation and venom PLA(2) pharmacological activities, are still under debate. An appreciation of the PLA(2) protein structure will yield new insights with regard to these activities, the salient structural features of the class I, II and III PLA(2) are discussed with respect to their functional roles. Copyright (C) 1996 Published by Elsevier B.V. Ltd
Resumo:
Agkistrodon contortrix laticinctus myotoxin is a Lys(49)- phospholipase A(2) (EC 3.1.1.4) isolated from the venom of the serpent A contortrix laticinctus (broad-banded copperhead). We present here three monomeric crystal structures of the myotoxin, obtained under different crystallization conditions. The three forms present notable structural differences and reveal that the presence of a ligand in the active site (naturally presumed to be a fatty acid) induces the exposure of a hydrophobic surface (the hydrophobic knuckle) toward the C terminus. The knuckle in A contortrix laticinctus myotoxin involves the side chains of Phe(121) and Phe(124) and is a consequence of the formation of a canonical structure for the main chain within the region of residues 118-125. Comparison with other Lys(49)-phospholipase A(2) myotoxins shows that although the knuckle is a generic structural motif common to all members of the family, it is not readily recognizable by simple sequence analyses. An activation mechanism is proposed that relates fatty acid retention at the active site to conformational changes within the C-terminal region, a part of the molecule that has long been associated with Ca2+-independent membrane damaging activity and myotoxicity. This provides, for the first time, a direct structural connection between the phospholipase active site and the C-terminal myotoxic site, justifying the otherwise enigmatic conservation of the residues of the former in supposedly catalytically inactive molecules.
Resumo:
Zhaoermiatoxin, an Arg49 phospholipase A(2) homologue from Zhaoermia mangshanensis (formerly Trimeresurus mangshanensis, Ermia mangshanensis) venom is a novel member of the PLA(2)-homologue family that possesses an arginine residue at position 49, probably arising from a secondary Lys49 -> Arg substitution that does not alter the catalytic inactivity towards phospholipids. Like other Lys49 PLA(2) homologues, zhaoermiatoxin induces oedema and strong myonecrosis without detectable PLA(2) catalytic activity. A single crystal with maximum dimensions of 0.2 x 0.2 x 0.5 mm was used for X-ray diffraction data collection to a resolution of 2.05 angstrom using synchrotron radiation and the diffraction pattern was indexed in the hexagonal space group P6(4), with unit-cell parameters a = 72.9, b = 72.9, c = 93.9 angstrom.
Resumo:
Myotoxin II, a myotoxic calcium-independent phospholipase-like protein isolated from the venom of Bothrops asper, possesses no detectable phospholipase activity. The crystal structure has been determined and refined at 2.8 Angstrom to an R factor of 16.5% (F>3 sigma) with excellent stereochemistry. Amino-acid differences between catalytically active phospholipases and myotoxin LI in the Ca2+-binding region, specifically the substitutions Tyr28-->Asn, Gly32-->Leu and Asp49-->Lys, result in an altered local conformation. The key difference is that the epsilon-amino group of Lys49 fills the site normally occupied by the calcium ion in catalytically active phospholipases. In contrast to the homologous monomeric Lys49 variant from Agkistrodon piscivorus piscivorus, myotoxin II is present as a dimer both in solution and in the crystalline state. The two molecules in the asymmetric unit are related by a nearly perfect twofold axis, yet the dimer is radically different from the dimer formed by the phospholipase from Crotalus atrox. Whereas in C. atrox the dimer interface occludes the active sites, in myotoxin II they are exposed to solvent.
Resumo:
We studied the ability of different Candida species to produce,at the same time, hyaluronidase, chondroitin sulphatase, proteinase, and phospholipase to assess whether they could be related to Candida pathogenicity. Only C. albicans was able to produce the four enzymes tested (73%) and was highly virulent to mice. Strains, that lack the capacity to produce one or more of the enzymes assayed, seemed less virulent or avirulent, similarly to the spontaneous hyaluronidase, chondroitin sulphatase, phospholipase and proteinase-deficient C. albicans strain FCF 14, 1 which was non-pathogenic to mice. Among the other Candida species tested, none of them produced the four enzymes simultaneously, being less virulent in intravenously inoculated mice.
Resumo:
Fernanda Canduri, Lit C. Mancuso, Andreimar M. Soares, Jose R. Giglio, Richard J. Ward and Raghuvir K. Arni. Crystallization of piratoxin I, a myotoxic Lys49-phospholipase A(2) homologue isolated from the venom of Bothrops pirajai. Toxicon 36, 547-551, 1998.-Large single crystals of piratoxin I, a Lys49-PLA(2) homologue with low enzymatic activity, have been obtained. The crystals belong to the orthorhombic system space group p2(1)2(1)2(1) and diffract X-raps to a resolution of 2.8 Angstrom. Preliminary analysis reveals the presence of two molecules in the crystallographic asymmetric unit. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Venom phospholipase A(2)s (PLA(2)s) display a wide spectrum of pharmacological activities and, based on the wealth of biochemical and structural data currently available for PLA(2)S, mechanistic models can now be inferred to account for some of these activities. A structural model is presented for the role played by the distribution of surface electrostatic potential in the ability of myotoxic D49/K49 PLA(2)s to disrupt multilamellar vesicles containing negatively charged natural and non-hydrolyzable phospholipids. Structural evidence is provided for the ability of K49 PLA(2)s to bind phospholipid analogues and for the existence of catalytic activity in K49 PLA(2)s. The importance of the existence of catalytic activity of D49 and K49 PLA(2)s in myotoxicity is presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Myotoxin-I (MjTX-I) was purified to homogeneity from the venom of Bothrops moojeni by ion-exchange chromatography on CM-Sepharose. Its molecular weight, estimated by SDS-PAGE, was 13,400 (reduced) or 26,000 (unreduced). The extinction coefficient (E-1.0 cm(1.0 mg/ml)) of MjTX-I was 1.145 at lambda = 278 nm, pH 7.0, and its isoelectric point was 8.2 at ionic strength mu = 0.1. When lyophilized and stored at 4 degrees C, dimeric, trimeric, and pentameric forms of the protein were identified by SDS-PAGE. This heterogeneous sample could be separated into three fractions by gel filtration on Sephadex 6-50. The fractions were analyzed by isoelectric focusing, immunoelectrophoresis, and amino acid composition, which indicated that heterogeneity was the result of different levels of self-association. Protein sequencing indicated that MjTX-I is a Lys49 myotoxin and consists of 121 amino acids (M-r = 13,669), containing a high proportion of basic and hydrophobic residues. It shares a high degree of sequence identity with other Lys49 PLA(2)-like myotoxins, but shows a significantly lower identity with catalytically active Asp49 PLA(2)s. The three-dimensional structure of MjTX-I was modeled based on the crystal structures of three highly homologous Lys49 PLA(2)-like myotoxins. This model showed that the amino acid substitutions are conservative, and mainly the beta-wing region, and the C-terminal extended random coil. MjTX-I displays local myotoxic and edema-inducing activities in mice, and is lethal by intraperitoneal injection, with an LD50 value of 8.5 +/- 0.8 mg/kg, In addition, it is cytotoxic to myoblasts/ myotubes in culture, and disrupts negatively charged liposomes. In comparison with the freshly prepared dimeric sample, the more aggregated forms showed significantly reduced myotoxic activity. However, the edema-inducing activity of MjTX-I was independent of molecular association. Phospholipase A(2) activity on egg yolk, as well as anticoagulant activity, were undetectable both in the native and in the more associated forms. His, Tyr, and Trp residues of the toxin were chemically modified by specific reagents. Although the myotoxic and lethal activities of the modified toxins were reduced by these treatments, neither its edema-inducing or Liposome-disrupting activities were significantly altered. Rabbit antibodies to native MjTX-I cross-reacted with the chemically modified forms, and both the native and modified MjTX-I preparations were recognized by antibodies against the C-terminal region 115-129 of myotoxin II from B. asper, a highly Lys49 PLA(2)-homologue with high sequencial similarity. (C) 2000 Academic Press.
Resumo:
Acidic phospholipase A(2) (PLA(2)) isoforms in snake venoms, particularly those from Bothrops jararacussu, have not been characterized. This article reports the isolation and partial biochemical, functional and structural characterization of four acidic PLA(2)s (designated SIIISPIIA, SIIISPIIB, SIIISPIIIA and SIIISPIIIB) from this venom. The single chain purified proteins contained 122 amino acid residues and seven disulfide bonds with approximate molecular masses of 15 kDa and isoelectric points of 5.3. The respective N-terminal sequences were: SIIISPIIA-SLWQFGKMIDYVMGEEGAKS; SIIISPIIB-SLWQFGKMIFYTGKNEPVLS; SIIISPIIIA-SLWQFGKMILYVMGGEGVKQ and SIIISPIIIB-SLWQFGKMIFYEMTGEGVL. Crystals of the acidic protein SIIISPIIIB diffracted beyond 1.8 Angstrom resolution. These crystals are monoclinic with unit cell dimensions of a = 40.1 Angstrom, b = 54.2 Angstrom and c = 90.7 Angstrom. The crystal structure has been refined to a crystallographic residual of 16.1% (R-free = 22.9%). Specific catalytic activity (U/mg) of the isolated acidic PLA(2)s were SIIISPIIA = 290.3 U/mg; SIIISPIIB = 279.0 U/mg; SIIISPIIIA = 270.7 U/mg and SIIISPIIIB = 96.5 U/mg. Although their myotoxic activity was low, SIIISPIIA, SIIISPIIIB and SIIISPIIIA showed significant anticoagulant activity. However, there was no indirect hemolytic activity. SIIISPIIIB revealed no anticoagulant, but presented indirect hemolytic activity. With the exception of SIIISPIIIB, which inhibited platelet aggregation, all the others were capable of inducing time-independent edema. Chemical modification with 4-bromophenacyl bromide did not inhibit the induction of edema, but did suppress other activities. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Understanding the in vitro neuromuscular activity of snake venom Lys49 phospholipase A(2) homologues
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)