85 resultados para Orthovanadates(V) potassium
Resumo:
Individually caged male Cobb broilers (24), 44 d of age, were used to evaluate effects of heat stress (1 d of data collection) and dietary electrolyte balance (DEB; Na + K - Cl, mEq/kg from 1 d of age). During summer rearing, mortality was variable, but DEB 240 improved growth, feed conversion ratio, water intake, and waterrfeed ratio vs. DEB 0. The temperature sequence for heat stress was 24 to 32°C in 30 min, 32 to 36°C in 30 min, 36 to 37°C in 15 min, and 37 to 41°C in 45 min. Maximum temperature was held for 15, 60, 90, or 360 min for data collection (relative humidity averaged 42 ± 7%). Results from the same room before and after heat stress were analyzed by DEB (1-factor ANOVA) and before vs. after heat stress compared across DEB (2-sample t-test). Heat stress decreased blood Na, K, and pCO2, and lymphocytes but increased heterophils. Blood HCO3 rose, Cl declined, and hematocrit gave a concave pattern (lowest at DEB 120) as DEB increased. After heat stress, DEB O decreased blood Na and K, and DEB O and 120 levels decreased blood HCO3. After heat stress blood pCO2 and hemoglobin decreased with DEB 240, but it had highest pCO2, a key factor. The DEB 120 gave longest times to panting and prostration with DEB O and 240 results lower but similar statistically. In heat stress, DEB 360 was excessive, DEB 120 and 240 were favorable, and DEB 0 was intermediate based on hematology, panting, and prostration responses.
Resumo:
Pearl millet (Penisetum glaucum) is an interesting species to be used as cover crop in tropical areas, showing a high ability in potassium uptake. Potassium (K) is not linked to organic compounds in the plant, and can easily be released from decaying straw becoming available for subsequent crops. This experiment evaluated K leaching from millet straw grown under potassium rates (0, 100, 200, and 300 mg dm-3), and submitted to five levels of simulated rain (5, 10, 20, 40, and 80 mm). Plants were grown in soil filled pots in a greenhouse. On the 50th day after emergence, the plants were desiccated with glyphosate. Artificial rain was applied over the straw. Potassium deficiency speeds up millet dehydration after herbicide application and increases lightly rain water retention in the straw. The amount of K leached right after plant desiccation is correlated with the residue nutrient content and can be as high as 64 kg ha-1 considering a mulch of 8 t ha -1. Although well-nourished millet plants release considerable amounts of K with the first rains, a large percentage of the nutrient is still retained in the straw. Copyright © Taylor & Francis, Inc.
Resumo:
The local order around K for K(CF3SO3) doped Siloxane-Poly(propyleneoxide) hybrids at different doping concentration was investigated by x-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge. The results indicate that the use of HCl as hydrolytic catalyst for gelation induces the precipitation of KCl. The ionic conductivity is strongly related to the presence of oxygen atoms as first neighbours around potassium and to the amount of KCl precipitate. © Physica Scripta 2005.
Resumo:
Type II Bartter's syndrome is a hereditary hypokalemic renal salt-wasting disorder caused by mutations in the ROMK channel (Kir1.1; Kcnj1), mediating potassium recycling in the thick ascending limb of Henle's loop (TAL) and potassium secretion in the distal tubule and cortical collecting duct (CCT). Newborns with Type II Bartter are transiently hyperkalemic, consistent with loss of ROMK channel function in potassium secretion in distal convoluted tubule and CCT. Yet, these infants rapidly develop persistent hypokalemia owing to increased renal potassium excretion mediated by unknown mechanisms. Here, we used free-flow micropuncture and stationary microperfusion of the late distal tubule to explore the mechanism of renal potassium wasting in the Romk-deficient, Type II Bartter's mouse. We show that potassium absorption in the loop of Henle is reduced in Romk-deficient mice and can account for a significant fraction of renal potassium loss. In addition, we show that iberiotoxin (IBTX)-sensitive, flow-stimulated maxi-K channels account for sustained potassium secretion in the late distal tubule, despite loss of ROMK function. IBTX-sensitive potassium secretion is also increased in high-potassium-adapted wild-type mice. Thus, renal potassium wasting in Type II Bartter is due to both reduced reabsorption in the TAL and K secretion by max-K channels in the late distal tubule. © 2006 International Society of Nephrology.
Resumo:
Anelastic spectroscopy (internal friction and the dynamic modulus) was measured by means of a torsion pendulum at 3-12 Hz, in the range of 100-300 K, for a KAP metaphosphate glass. Two thermally activated internal friction peaks appeared at ∼190 and ∼250 K. These peaks were attributed to the behavior of potassium ions (high temperature) and to hydrogen (low temperature). Dynamic modulus showed a gradual decrease with increasing temperature in the range studied for all compositions. © 2006 Elsevier B.V. All rights reserved.
Resumo:
C4H7BF3KS2, monoclinic, P121/c1 (no. 14), a = 14.7374(3) Å, b = 9.0612(1) Å, c = 13.5805(2) Å, β = 98.964(4)°, V = 1791.4 Å3, Z = 8, Rgt(F) = 0.029, wRref(F2) = 0.010, T = 296 K. © by Oldenbourg Wissenschaftsverlag.
Resumo:
Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.
Resumo:
Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil-plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The Bonus no. 2 was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L-1) and four K concentrations (4, 6, 8, and 10 mmol L-1). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L-1) and K (10 mmol L-1) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm-2). © 2013 Luiz Augusto Gratieri et al.
Resumo:
Background and Aims: Recent studies showed a positive tree response to Na addition in K-depleted tropical soils. Our study aimed to gain insight into the effects of K and Na fertilizations on leaf area components for a widely planted tree species. Methods: Leaf expansion rates, as well as nutrient, polyol and soluble sugar concentrations, were measured from emergence to abscission of tagged leaves in 1-year-old Eucalyptus grandis plantations. Leaf cell size and water status parameters were compared 1 and 2 months after leaf emergence in plots with KCl application (+K), NaCl application (+Na) and control plots (C). Results: K and Na applications enhanced tree leaf area by increasing both leaf longevity and the mean area of individual leaves. Higher cell turgor in treatments +K and +Na than in the C treatment resulting from higher concentrations of osmotica contributed to increasing both palisade cell diameters and the size of fully expanded leaves. Conclusions: Intermediate total tree leaf area in treatment +Na compared to treatments C and +K might result from the capacity of Na to substitute K in osmoregulatory functions, whereas it seemed unable to accomplish other important K functions that contribute to delaying leaf senescence. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of mulch on the soil surface after the mechanical harvesting of sugarcane (Saccharum officinarum L.) enhances the cycling of nutrients, especially K, which can decrease K fertilizer recommendations for the crop. The aim of this study was to evaluate the effect of K addition to an Oxisol, with an initial concentration 0.07 cmol(c) K kg(-1), in first and second ratoon (no-till) sugarcane cultures by a conservationist system, i.e. rational use of fertilizers, use of alternative inputs and especially the maintenance of residues in soil that was previously burned to facilitate cutting. The following K doses were tested: 0, 32.5, 65, 130, and 195 kg K2O ha(-1), arranged in a randomized block design with five replicates. Potassium content in the soil and in the plant, as well as the yield and the quality of stalks were evaluated. Soil K application increased K concentration in soil and plant, and was reflected in the prodUction of stalks, with higher production (87.5 and 107.5 t ha(-1)) with the use of 120 and 123 kg K2O ha(-1) in first and second ratoon sugarcane, respectively. At the first 2 yr it was not possible to reduce the K fertilization in ratoon. Therefore, with the introduction of the conservationist system there was an increase (20 t ha(-1)) at the second ratoon regarding the first one with the same applied rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)