117 resultados para Optically pumped
Resumo:
We report the observation of intense frequency up-conversion in Nd3+-doped fluoroindate glasses pumped by the second harmonic of a cw mode-locked Nd: YAG laser. Mechanisms for generating the observed emissions are discussed.
Resumo:
Multiphonon assisted frequency upconversion was observed in a Nd3+-doped fluoroindate glass pumped at 866 nm. A near-infrared upconverted emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. The intensity of the upconverted emission experienced a 40-fold enhancement when the sample's temperature was varied from 298 to 498 K. A rate equation model that includes light pumping and multiphonon absorption via thermally coupled electronic excited states of Nd3+ was used, describing quite well the experimental results. © 2001 American Institute of Physics.
Resumo:
Energy transfer processes between Er3+ and Tm3+ were investigated examining the frequency upconversion emissions in a fluoroindate glass pumped at 790 nm. A 60-fold enhancement in the emission at ≈670 nm originating from Er3+ was observed when Tm3+ at concentration of 2% was introduced in a sample containing 2% of Er3+. The results are explained considering the influence of cross-relaxation processes between the active ions. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present recent results on frequency upconversion (UPC) obtained in fluoroindate glasses (FIG) doped with Ho3+, Tm3+ and Nd3+ ions and codoped with Pr3+/Nd3+ and Yb3+/Tb3+ ions. The results for the Ho3+-doped samples show strong evidence of energy transfer (ET) between Ho3+ ions resonantly excited at 640 nm. The origin of the blue-green upconverted fluorescence observed was identified and the dynamics of the signals revealed the pathways involved in the UPC process. In the case of Tm3+-doped FIG, the samples were resonantly excited at 650 nm and the main mechanism that contributes for the red-to-blue upconversion is excited-state absorption (ESA). The FIG samples codoped with Pr3+/Nd3+ were excited at 588 nm in resonance with transitions starting from the ground state of the Nd 3+ and the Pr3+ ions. It was observed that the presence of Nd3+ ions enhanced the Pr3+ emission at 480 nm by two orders of magnitude. Multiphonon (MP)-assisted upconversion is also discussed for Nd3+-doped FIG pumped at 866 nm. Emission at 750 nm with a peculiar linear dependence with the laser intensity was observed and explained. A rate-equation model that includes MP absorption via thermally coupled electronic excited states of Nd3+ was developed and describes well the experimental results. The role played by effective phonon modes is clearly demonstrated. MP-assisted UPC process was also studied in Yb3+/ Tb3+-codoped FIG samples excited at 1064 nm, which is off-resonance with electronic transitions starting from the ground state. It was determined that the mechanism leading to Tb3+ emission in the blue is due to ET from a pair of excited Yb3+ ions followed by ESA in the Tb 3+ ions. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.
Resumo:
70SiO2 - 30HfO2 planar waveguides, activated by Er3+ concentration ranging from 0.3 to 1 mol%, were prepared by solgel route, using dip-coating deposition on silica glass substrates. The waveguides showed high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 nm or 514.5 nm continuous-wave laser light, the waveguides showed the 4I 13/2→4I15/2 emission band with a bandwidth of 48 nm. The spectral features were found independent both on erbium content and excitation wavelength. The 4I13/2 level decay curves presented a single exponential profile, with a lifetime between 2.9-5.0 ms, depending on the erbium concentration.
Resumo:
This investigation was carried out within the Paraná sedimentary basin, involved the sampling of 77 pumped tubular wells, and was realized with the puipose of evaluating the radioactivity in the Brazilian part of Guarani (Botucatu-Pirambóia, Tacuarembó, Misiones) aquifer. The radioactivity due to nuclides belonging to uranium and thorium series decay was investigated in terms of the uranium isotopes 234U and 238U, radon (222Rn), and the radium isotopes 226Ra and 228Ra. The obtained results were compared with the maximum permissible concentration limits in drinking water defined by the Brazilian national standard, as well with the guidelines for drinking water quality established by the World Health Organization. The importance of water-rock/soil interactions was considered in order to explain most of the obtained data.
Resumo:
Aims: We evaluated solvents and total particulates exposures in auto body repair shops together with a search of painter's related complaints. Methods: 26 painters exposures were evaluated by pumped personal sampling; solvents were retained in charcoal sorbent tubes and the particulates in PVC filters. Painter's personal habits and their work characteristics were obtained through a questionnaire, applied in a private interview. For the symptoms the Q16 questionnaire was used, added of questions about complaints during the painting. Results: High exposures were detected during spray painting. For solvents, the TLV-STEL adjusted for the mixtures was surpassed in six evaluations. However, as repaint is a short-term operation, it makes the average concentrations weighed for the work shift lower than the TLV-TWA adjusted for the mixtures. Total particulate concentrations had surpassed the TLV-TWA in four of the evaluations. Symptoms frequency in the Q16 questionnaire was higher for painters than for the controls (Mann-Whitney test U=193; p=0.008), and they showed positive correlations with the age (Spearman r=0.354, t=1.85, p=0.076), the number of years in the profession (Spearman r=0.433, t=2.35, p=0.027) and the alcoholic beverage consumption (Spearman r=0.457, t=2.516, p=0.019). Conclusions: The painting work done at car repair shops can result in high solvent and particulate exposures, although they are short-term operations. Their acute and chronic effects for the painters do not have been clearly evidenced in the present study, continuing deserving multidisciplinary attention.
Resumo:
The study compared the host response to a human and a porcine acellular dermal tissue implanted in the subcutaneous space of a rat model. The human and porcine acellular grafts were surgically implanted in the subcutaneous tissue of rats (5 rats/group) and the materials were evaluated at 7, 15, 30, 60 and 180 postoperative days (PO). The histological immune response was quantified using a digital image analysis system, which evaluated the number of vessels present in the implants and in the surrounding soft tissue, the area of inflammatory cell infiltration in the grafts, the width of the capsular formation present around the tissues and the area of implants absorbed. The data were submitted to statistical analysis. Light microscopy showed mononuclear cellular infiltration, the presence of a capsular formation surrounding the grafts and the presence of vacuolar structures (optically empty spaces) inside the implants. The image analysis comparing both materials showed significant inflammatory cells in the human graft at 15 and 30 PO, thicker capsular formation in the porcine tissue at 60 PO, increased number of vessels inside the implants and in the surrounding tissues in the porcine graft and a similar absorption pattern in both materials at 180 PO. The histological findings showed that both tissues were well-tolerated when implanted in the subcutaneous tissue of rats, allowing us to consider the porcine acellular dermal graft as a provisional alternative material for reconstructive plastic surgery. Copyright © 2005 Taylor & Francis LLC.
Resumo:
In indicating the microwave irradiation for disinfecting dentures it is necessary to see how this procedure influences Candida albicans integrity and viability. The aim of this study was to evaluate the ability of microwaves to inactivate C. albicans and damage cell membrane integrity. Two 200-ml C. albicans (ATCC 10231) suspensions were obtained. A sterile denture was placed in a beaker containing the Experimental (ES) or the Control suspension (CS). ES was microwaved at 650 W for 6 min. Suspensions were optically counted using methylene blue dye uptake as indicative of membrane-damaged cells; spread on Agar Sabouraud dextrose (ASD) for viability assay; or spectrophotometrically measured at 550 nm. Cell-free solutions were submitted to content analyses of protein (Bradford and Pyrogallol red methods); Ca++ (Cresolftaleine complexone method); DNA (spectrophotometer measurements at 260 nm) and K + (selective electrode technique). Data were analysed by Student's t- or Wilcoxon z-tests (α = 0.05). All ES cells demonstrated cell membrane damage. Viable cells were non-existent in the ES ASD plates. No significant difference in optical density between ES and CS was observed (P = 0.272). ES cells released significantly high protein (P < 0.001, Bradford; P = 0.005, Pyrogallol red), K+ (P < 0.001), Ca++ (P = 0.012) and DNA (P = 0.046) contents. Microwaves inactivated C. albicans and damaged cell membrane integrity. © 2007 The Authors.
Resumo:
We describe the design and tests of a set-up mounted in a conventional double beam spectrophotometer, which allows the determination of optical density of samples confined in a long liquid core waveguide (LCW) capillary. Very long optical path length can be achieved with capillary cell, allowing measurements of samples with very low optical densities. The device uses a custom optical concentrator optically coupled to LCW (TEFLON® AF). Optical density measurements, carried out using a LCW of ̃ 45 cm, were in accordance with the Beer-Lambert Law. Thus, it was possible to analyze quantitatively samples at concentrations 45 fold lower than that regularly used in Spectrophotometric measurements.
Resumo:
Brazil has an important role in the biomass burning, with the detection of approximately 100,000 burning spots in a single year (2007). Most of these spots occur in the southern part of the Amazon basin during the dry season (from August to november) and these emissions reach the southeast of the country, a highly populated region and with serious urban air pollution problems. With the growing demand on biofuels, sugarcane is considerably expanding in the state of São Paulo, being a strong contributor to the bad air quality in this region. In the state of São Paulo, the main land use are pasture and sugarcane crop, that covers around 50% and 10% of the total area, respectively. Despite the aerosol from sugarcane burning having reduced atmospheric residence time, from a few days to some weeks, they might get together with those aerosol which spread over long distances (hundreds to thousands of kilometers). In the period of June through February 2010 a LIDAR observation campaign was carried in the state of São Paulo, Brazil, in order to observe and characterize optically the aerosols from two distinct sources, namely, sugar cane biomass burning and industrial emissions. For this purpose 2 LIDAR systems were available, one mobile and the other placed in a laboratory, both working in the visible (532 nm) and additionally the mobile system had a Raman channel available (607 nm). Also this campaign counted with a SODAR, a meteorological RADAR specially set up to detect aerosol echoes and gas-particle analyzers. To guarantee a good regional coverage 4 distinct sites were available to deploy the instruments, 2 in the near field of biomass burning activities (Rio Claro and Bauru), one for industrial emissions (Cubatão) and others from urban sources (São Paulo). The whole campaign provide the equivalent of 30 days of measurements which allowed us to get aerosol optical properties such as backscattering/extinction coefficients, scatter and LIDAR ratios, those were used to correlate with air quality and meteorological indicators and quantities. In this paper we should focus on the preliminary results of the Raman LIDAR system and its derived aerosol optical quantities. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
An upconversion random laser (RL) operating in the ultraviolet is reported for Nd 3+ doped fluoroindate glass powder pumped at 575 nm. The RL is obtained by the resonant excitation of the Nd 3+ state 2G 7/2 followed by energy transfer among two excited ions such that one ion in the pair decays to a lower energy state and the other is promoted to state 4D 7/2 from where it decays emitting light at 381 nm. The RL threshold of 30 kW/cm 2 was determined by monitoring the photoluminescence intensity as a function of the pump laser intensity. The RL pulses have time duration of 29 ns that is 50 times smaller than the decay time of the upconversion signal when the sample is pumped with intensities below the RL laser threshold. © 2011 Optical Society of America.
Resumo:
In this work we report our achievements in the elaboration and optical characterizations of low-losses suspended core optical fibers elaborated from As2S3 glass. For preforms elaboration, alternatively to other processes like the stack and draw or extrusion, we use a process based on mechanical drilling. The drawing of these drilled performs into fibers allows reaching a suspended core geometry, in which a 2 μm diameter core is linked to the fiber clad region by three supporting struts. The different fibers that have been drawn show losses close to 0.9 dB/m at 1.55 μm. The suspended core waveguide geometry has also an efficient influence on the chromatic dispersion and allows its management. Indeed, the zero dispersion wavelength, which is around 5 μm in the bulk glass, is calculated to be shifted towards around 2μm in our suspended core fibers. In order to qualify their nonlinearity we have pumped them at 1.995 μm with the help of a fibered ns source. We have observed a strong non linear response with evidence of spontaneous Raman scattering and strong spectral broadening. © 2011 SPIE.
Resumo:
Sponge spicules are siliceous microfossils that are especially useful for analysis of sandy fluvio-lacustrine sediments. Sponge spicules in a long sediment core (~550 cm below surface), consisting of fine sand, sandy silt, and organic-rich mud, recovered from the floodplain of the Nabileque River, southern Pantanal, Brazil (S20°16′38. 3″/W57°33′00. 0″), form the basis of a novel paleoenvironmental interpretation for this region. Optically stimulated luminescence dates constrain the timing of deposition to the middle-late Holocene and all spicules identified are typical of the Brazilian cerrado biome. The base of the section is dominated by Oncosclera navicella Carter 1881, Metaniaspinata Carter 1881, and Corvospongilla seckti Bonetto and Ezcurra de Drago 1966, which indicate a lotic to semi-lotic environment strongly influenced by an actively meandering river channel at ~6. 7-5. 7 ka BP. The appearance of Heterorotula fistula Volkmer-Ribeiro and Motta 1995, Dosilia pydanieli Volkmer-Ribeiro 1992 and Radiospongilla amazonensis Volkmer-Ribeiro and Maciel 1983 at ~340 cm downcore suggests a reduction in flowing water and a more stable lentic environment, consistent with deposition in an oxbow lake. This oxbow lake environment existed during an interval of regional aridity between ~4. 5 and 3. 9 ka BP. Spicules, as well as phytoliths and diatoms, are highly variable moving up-section, with species from both lotic and lentic ecosystems present. Above ~193 cm, the total abundance of spicules declines, consistent with wetter climate conditions and development of an underfit river similar to the modern floodplain. Results support hypotheses related to migration of the Paraguay River inferred from geomorphological studies and add a key southern-region dataset to the emerging Holocene database of paleoenvironmental records from the Pantanal wetlands. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
We synthesize and study the properties of praseodymium doped fluoroindate glasses. Glass compositions with praseodymium molar concentrations up to 5% were obtained with good optical quality. Thermal, optical, and luminescence properties are investigated. Judd-Ofelt analysis is used to determine radiative lifetime and emission cross-section of the orange transition originating from the 3P0 level. We find that these glasses are good candidates for the realization of blue diode laser pumped orange lasers for quantum information processing applications. © 2012 Elsevier B.V. All rights reserved.