71 resultados para OMEGA LIMITS
Resumo:
We study soft limits of correlation functions for the density and velocity fields in the theory of structure formation. First, we re-derive the (resummed) consistency conditions at unequal times using the eikonal approximation. These are solely based on symmetry arguments and are therefore universal. Then, we explore the existence of equal-time relations in the soft limit which, on the other hand, depend on the interplay between soft and hard modes. We scrutinize two approaches in the literature: the time-flow formalism, and a background method where the soft mode is absorbed into a locally curved cosmology. The latter has been recently used to set up (angular averaged) 'equal-time consistency relations'. We explicitly demonstrate that the time-flow relations and 'equal-time consistency conditions'are only fulfilled at the linear level, and fail at next-to-leading order for an Einstein de-Sitter universe. While applied to the velocities both proposals break down beyond leading order, we find that the 'equal-time consistency conditions'quantitatively approximates the perturbative results for the density contrast. Thus, we generalize the background method to properly incorporate the effect of curvature in the density and velocity fluctuations on short scales, and discuss the reasons behind this discrepancy. We conclude with a few comments on practical implementations and future directions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estimation of the lower flammability limits of C-H compounds at 25 degrees C and 1 atm; at moderate temperatures and in presence of diluent was the objective of this study. A set of 120 degrees C H compounds was divided into a correlation set and a prediction set of 60 compounds each. The absolute average relative error for the total set was 7.89%; for the correlation set, it was 6.09%; and for the prediction set it was 9.68%. However, it was shown that by considering different sources of experimental data the values were reduced to 6.5% for the prediction set and to 6.29% for the total set. The method showed consistency with Le Chatelier's law for binary mixtures of C H compounds. When tested for a temperature range from 5 degrees C to 100 degrees C , the absolute average relative errors were 2.41% for methane; 4.78% for propane; 0.29% for iso-butane and 3.86% for propylene. When nitrogen was added, the absolute average relative errors were 2.48% for methane; 5.13% for propane; 0.11% for iso-butane and 0.15% for propylene. When carbon dioxide was added, the absolute relative errors were 1.80% for methane; 5.38% for propane; 0.86% for iso-butane and 1.06% for propylene. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We calculate within the framework of relativistic nuclear models the contribution of the ρ0 - ω mixing interaction to the binding energy differences of the mirror nuclei in the neighborhood of A = 16 and A = 40. We use two relativistic models for the nuclear structure, one with scalar and vector Woods-Saxon potentials, and the Walecka model. The ρ0 - ω interaction is treated in first order perturbation theory. When using the Walecka model the ρ- and ω-nucleon coupling constants are the same for calculating bound state wave functions and the perturbation due to the mixing. We find that the relativistic results on the average are of the same order as the ones obtained with nonrelativistic calculations.
Resumo:
We investigate the impact of new physics beyond the standard model to the s → dγ process, which is responsible for the short-distance contribution to the radiative decay Ω-Ξ-γ. We study three representative extensions of the standard model: namely, a one-family technicolor model, a two-Higgs-doublet model, and a model containing scalar leptoquarks. When constraints arising from the observed b→sγ transition and the upper limit on D0-D̄0 mixing are taken into account, we find no significant contributions of new physics to the s→dy process.
Resumo:
The momentum dependence of the ρ0-ω mixing contribution to charge-symmetry breaking (CSB) in the nucleon-nucleon interaction is compared in a variety of models. We focus in particular on the role that the structure of the quark propagator plays in the predicted behaviour of the ρ0-ω mixing amplitude. We present new results for a confining (entire) quark propagator and for typical propagators arising from explicit numerical solutions of quark Dyson-Schwinger equations We compare these to hadronic and free quark calculations The implications for our current understanding of CSB experiments is discussed.
Resumo:
We study the process e+e- γγνν̄ in the context of a strong electroweak symmetry breaking model, which can be a source of events with two photons and missing energy at LEP2. We investigate bounds on the model assuming that no deviation is observed from the standard model within a given experimental error.
Resumo:
QCD sum rules are used to calculate the contribution of the short-distance single-quark transition s-->d gamma to the amplitudes of the hyperon radiative decay Omega(-)-->Xi(-) gamma. We reevaluate the Wilson coefficient of the effective operator responsible for this transition. We obtain a branching ratio which is comparable to the unitarity limit.
Resumo:
The additional effect of omega-3 supplementation in association with lifestyle modification program (LSMP) in free living-adults was evaluated.We studied 39 adults (control group with LSMP (G1, n = 16) and LSMP plus supplementation of 3 g of fish oil per day (360 mg of docosahexaenoic acid and 540 mg of eicosapentaenoic acid) (G2, n = 23)) during 20 weeks. The fish oil group showed a significant decrease in waist circumference (1.3%) followed by metabolic syndrome reduction (29%) mainly due to normalization of blood pressure (33.3%) and triacylglycerol (27.3%). Omega-3 supplementation provided additional benefits to LSMP in the resolution of metabolic syndrome