152 resultados para Neural Network Assembly Memory Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grinding is a workpiece finishing process for advanced products and surfaces. However, the constant friction between workpiece and grinding wheel causes the latter to lose its sharpness, thereby impairing the result of the grinding process. When this occurs, the dressing process is essential to sharpen the worn grains of the grinding wheel. The dressing conditions strongly influence the performance of the grinding operation; hence, monitoring them throughout the process can increase its efficiency. The purpose of this study was to classify the wear condition of a single-point dresser using intelligent systems whose inputs were obtained by digitally processing acoustic emission signals. Two multilayer perceptron (MLP) neural networks were compared for their classification ability, one using the root mean square (RMS) statistics and another the ratio of power (ROP) statistics as input. In this study, it was found that the harmonic content of the acoustic emission signal is influenced by the condition of the dresser, and that the condition of the tool under study can be classified by using the aforementioned statistics to feed a neural network. © IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High throughput sequencing (HTS) provides new research opportunities for work on non-model organisms, such as differential expression studies between populations exposed to different environmental conditions. However, such transcriptomic studies first require the production of a reference assembly. The choice of sampling procedure, sequencing strategy and assembly workflow is crucial. To develop a reliable reference transcriptome for Triatoma brasiliensis, the major Chagas disease vector in Northeastern Brazil, different de novo assembly protocols were generated using various datasets and software. Both 454 and Illumina sequencing technologies were applied on RNA extracted from antennae and mouthparts from single or pooled individuals. The 454 library yielded 278 Mb. Fifteen Illumina libraries were constructed and yielded nearly 360 million RNA-seq single reads and 46 million RNA-seq paired-end reads for nearly 45 Gb. For the 454 reads, we used three assemblers, Newbler, CAP3 and/or MIRA and for the Illumina reads, the Trinity assembler. Ten assembly workflows were compared using these programs separately or in combination. To compare the assemblies obtained, quantitative and qualitative criteria were used, including contig length, N50, contig number and the percentage of chimeric contigs. Completeness of the assemblies was estimated using the CEGMA pipeline. The best assembly (57,657 contigs, completeness of 80 %, < 1 % chimeric contigs) was a hybrid assembly leading to recommend the use of (1) a single individual with large representation of biological tissues, (2) merging both long reads and short paired-end Illumina reads, (3) several assemblers in order to combine the specific advantages of each.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)