125 resultados para Myeloperoxidase (MPO)
Resumo:
Inflammatory bowel diseases are characterized by a chronic clinical course of relapse and remission associated with self-destructive inflammation of the gastrointestinal tract. Active extracts from plants have emerged as natural potential candidates for its treatment. Abarema cochliacarpos (Gomes) Barneby & Grimes, Fabaceae (Barbatimão), is a native medicinal plant in to Brazil. Previously we have demonstrated in an acute colitis model a marked protective effect of a butanolic extract, so we decided to assess its anti-inflammatory effect in a chronic ulcerative colitis model induced by trinitrobenzensulfonic acid (TNBS). Abarema cochliacarpos (150 mg/day, v.o.) was administered for fourteen consecutive days. This treatment decreased significantly macroscopic damage as compared with TNBS. Histological analysis showed that the extract improved the microscopic structure. Myeloperoxidase activity (MPO) was significantly decreased. Study of cytokines showed that TNF-α was diminished and IL-10 level was increased after Abarema cochliacarpos treatment. In order to elucidate inflammatory mechanisms, expression of cyclooxygenase (COX)-2 and nitric oxide synthase (iNOS) were studied showing a significant downregulation. In addition, there was reduction in the JNK and p-38 activation. Finally, IκB degradation was blocked by Abarema cochliacarpos treatment being consistent with an up-regulation of the NF-kappaB-binding activity. These results reinforce the anti-inflammatory effects described previously suggesting that Abarema cochliacarpos could provide a source for the search for new anti-inflammatory compounds useful in ulcerative colitis treatment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Accumulating evidence points to relationships between increased production of reactive oxygen or decreased antioxidant protection in schizophrenic patients. Chlorpromazine (CPZ), which remains a benchmark treatment for people with schizophrenia, has been described as a pro-oxidant compound. Because the antioxidant compound melatonin exerts protective effects against CPZ-induced liver disease in rats, in this investigation, our main objective was to study the effect of CPZ as a co-catalyst of peroxidase-mediated oxidation of melatonin. We found that melatonin was an excellent reductor agent of preformed CPZ cation radical (CPZ(center dot+)). The addition of CPZ during the horseradish peroxidase (HRP)-catalyzed oxidation of melatonin provoked a significant increase in the rate of oxidation and production of N-1-acetyl-N-2-formyl-5-methoxykynuramine (AFMK). Similar results were obtained using myeloperoxidase. The effect of CPZ on melatonin oxidation was rather higher at alkaline pH. At pH 9.0, the efficiency of oxidation of melatonin was 15 times higher and the production of AFMK was 30 times higher as compared with the assays in the absence of CPZ. We suggest that CPZ is able to exacerbate the rate of oxidation of melatonin by an electron transfer mechanism where CPZ(center dot+), generated during the peroxidase-catalyzed oxidation, is able to efficiently oxidize melatonin.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Activated phagocytes oxidize the hormone melatonin to N-1-acethyl-N-2-formyl-5-methoxykynuramine (AFMK) in a superoxide anion- and myeloperoxidase-dependent reaction. We examined the effect of melatonin, AFMK and its deformylated-product N-acetyl-5-methoxykynuramine (AMK) on the phagocytosis, the microbicidal activity and the production of hypochlorous acid by neutrophils. Neither neutrophil and bacteria viability nor phagocytosis were affected by melatonin, AFMK or AMK. However these compounds affected the killing of Staphylococcus aureus. After 60 min of incubation, the percentage of viable bacteria inside the neutrophil increased to 76% in the presence of 1 mM of melatonin, 34% in the presence of AFMK and 73% in the presence of AMK. The sole inhibition of HOCl formation, expected in the presence of myeloperoxidase substrates, was not sufficient to explain the inhibition of the killing activity. Melatonin caused an almost complete inhibition of HOCl formation at concentrations of up to 0.05 mM. Although less effective, AMK also inhibited the formation of HOCl However, AFMK had no effect on the production of HOCl These findings corroborate the present view that the killing activity of neutrophils is a complex phenomenon, which involves more than just the production of reactive oxygen species. Furthermore, the action of melatonin and its oxidation products include additional activities beyond their antioxidant property. The impairment of the neutrophils' microbicidal activity caused by melatonin and its oxidation products may have important clinical implications, especially in those cases in which melatonin is pharmacologically administered in patients with infections. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
Redox processes are involved in the mechanism of action of NADPH oxidase inhibitors such as diphenyleneiodonium and apocynin. Here, we studied the structure-activity relationship for apocynin and analogous ortho-methoxy-substituted catechols as inhibitors of the NADPH oxidase in neutrophils and their reactivity with peroxidase. Aiming to alter the reduction potential, the ortho-methoxy-catechol moiety was kept constant and the substituents at para position related to the hydroxyl group were varied. Two series of compounds were employed: methoxy-catechols bearing electron-withdrawing groups (MC-W) such as apocynin, vanillin, 4-nitroguaiacol, 4-cyanoguaiacol, and methoxy-catechol bearing electron-donating groups (MC-D) such as 4-methylguaiacol and 4-ethylguaiacol. We found that MC-D were weaker inhibitors compared to MD-W. Furthermore, the radicals generated by oxidation of MC-W via MPO/H(2)O(2), but not for MC-D, were able to oxidize glutathione (GSH) as verified by the formation of thiyl radicals, depletion of GSH, and recycling of the ortho-methoxy-catechols during their oxidations. The capacity of oxidizing sulfhydryl (SH) groups was also verified when ovalbumin was incubated with MC-W, but not for MC-D. Since the effect of apocynin has been correlated with inactivation of the cytosolic fractions of the NADPH oxidase complex and its oxidation during the inhibitory process develops a special role in this process, we suggest that the close relationship between the reactivity of the radicals of MC-W compounds with thiol groups and their efficacy as NADPH oxidase inhibitor could be the chemical pathway behind the mechanism of action of apocynin and should be taken into account in the design of new and specific NADPH oxidase inhibitors. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Paepalantine (9,10-dihydroxy-5,7-dimethoxy-1H-naphto(2,3c)pyran-1-one), a natural isocoumarin isolated from the capitula of Paepalanthus bromelioides (Eriocaulaceae), was assessed for its effect on the respiratory burst (zymosan-stimulated luminol-enhanced chemiluminescence and. PMA-stimulated lucigenin-enhanced chemiluminescence) of polymorphonuclear neutrophils in vitro. Special attention was devoted to establishing the IC50 for neutrophils. Paepalantine was able to decrease luminol and lucigenin chemiluminescence, reflecting an inhibitory effect on the respiratory burst, with an ED50 of 0.44 +/- 0.05 and 0.84 +/- 0.15 mug/ml, respectively. A cell-free system was performed with paepalantine on myeloperoxidase/H2O2 and myeloperoxidase/H2O2/Cl- systems. Paepalantine inhibited luminol oxidation in both systems. This inhibition was related to the interaction of paepalantine-myeloperoxidase and its scavenger effect on HOCl.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)