226 resultados para Mycobacterium haemophilum


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multidrug and extensively drug resistant Mycobacterium tuberculosis are a threat to tuberculosis control programs. Genotyping methods, such as spoligotyping and MIRU-VNTR typing (Mycobacterial Interspersed Repetitive Units), are useful in monitoring potentially epidemic strains and estimating strain phylogenetic lineages and/or genotypic families. M. tuberculosis Latin American Mediterranean (LAM) family is a major worldwide contributor to tuberculosis (TB). LAM specific molecular markers, Ag85C(103) single nucleotide polymorphism (SNP) and RDRio long-sequence polymorphism (LSP), were used to characterize spoligotype signatures from 859 patient isolates from Portugal. LAM strains were found responsible for 57.7% of all tuberculosis cases. Strains with the RDRio deletion (referred to as RDRio) were estimated to represent 1/3 of all the strains and over 60% of the multidrug resistant (MDR) strains. The major spoligotype signature SIT20 belonging to the LAM1 RDRio sublineage, represented close to 1/5th of all the strains, over 20% of which were MDR. Analysis of published datasets according to stipulated 12 loci MIRU-VNTR RDRio signatures revealed that 96.3% (129/134) of MDR and extensively drug resistant (XDR) clusters were RDRio. This is the first report associating the LAM RDRio sublineage with MDR. These results are an important contribution to the monitoring of these strains with heightened transmission for future endeavors to arrest MDR-TB and XDR-TB. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The World Health Organization (WHO) advises treatment of Mycobacterium ulcerans disease, also called Buruli ulcer'' (BU), with a combination of the antibiotics rifampicin and streptomycin (R+S), whether followed by surgery or not. In endemic areas, a clinical case definition is recommended. We evaluated the effectiveness of this strategy in a series of patients with large ulcers of >= 10 cm in longest diameter in a rural health zone of the Democratic Republic of Congo (DRC).Methods: A cohort of 92 patients with large ulcerated lesions suspected to be BU was enrolled between October 2006 and September 2007 and treated according to WHO recommendations. The following microbiologic data were obtained: Ziehl-Neelsen (ZN) stained smear, culture and PCR. Histopathology was performed on a sub-sample. Directly observed treatment with R+S was administered daily for 12 weeks and surgery was performed after 4 weeks. Patients were followed up for two years after treatment.Findings: Out of 92 treated patients, 61 tested positive for M. ulcerans by PCR. PCR negative patients had better clinical improvement than PCR positive patients after 4 weeks of antibiotics (54.8% versus 14.8%). For PCR positive patients, the outcome after 4 weeks of antibiotic treatment was related to the ZN positivity at the start. Deterioration of the ulcers was observed in 87.8% (36/41) of the ZN positive and in 12.2% (5/41) of the ZN negative patients. Deterioration due to paradoxical reaction seemed unlikely. After surgery and an additional 8 weeks of antibiotics, 98.4% of PCR positive patients and 83.3% of PCR negative patients were considered cured. The overall recurrence rate was very low (1.1%).Interpretation: Positive predictive value of the WHO clinical case definition was low. Low relapse rate confirms the efficacy of antibiotics. However, the need for and the best time for surgery for large Buruli ulcers requires clarification. We recommend confirmation by ZN stain at the rural health centers, since surgical intervention without delay may be necessary on the ZN positive cases to avoid progression of the disease. PCR negative patients were most likely not BU cases. Correct diagnosis and specific management of these non-BU ulcers cases are urgently needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lysogenic capacity of human macrophages facing M. leprae in vitro may be dependent on an important genetic component. Although the familial aggregation of the trait is demonstrated, this is a necessary but not sufficient condition to prove genetic influence. The data do not fit some simple genetic models (autosomal dominant or incompletely dominant gene; dominant or recessive sex-linked gene). The results obtained are consistent with the hypothesis that the macrophages' lysogenic capacity is mainly due to a major gene with variable expressivity. This hypothesis may be too simple to account for the whole variability detected and therefore must be considered a working hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is expected that a total of 225 million new cases and 79 million deaths will occur between 1998 and 2030. The reemergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons, and the proliferation of multi-drug-resistant strains have created a need to develop new antimycobacterial agents. The existence of homologues to the shikimate pathway enzymes has been predicted by the determination of the genome sequence of Mycobacterium tuberculosis. We have previously reported the cloning and overexpression of M. tuberculosis aro A-encoded EPSP synthase in both soluble and active forms, without IPTG induction. Here, we describe the purification of M. tuberculosis EPSP synthase (mtEPSPS) expressed in Escherichia coli BL21(DE3) host cells. Purification of mtEPSPS was achieved by a one-step purification protocol using an anion exchange column. The activity of the homogeneous enzyme was measured by a coupled assay using purified shikimate kinase and purine nucleoside phosphorylase proteins. A total of 53 mg of homogeneous enzyme could be obtained from 1 L of LB cell culture, with a specific activity value of approximately 18 U mg-1. The results presented here provide protein in quantities necessary for structural and kinetic studies, which are currently underway in our laboratory. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality due to a bacterial pathogen. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of multi-drug resistant strains (MDR-TB), defined as resistant to isoniazid and rifampicin, and 79% of MDR-TB cases are now super strains, resistant to at least three of the four main drugs used to treat TB. Thus there is a need for the development of effective new agents to treat TB. The shikimate pathway is an attractive target for the development of antimycobacterial agents because it has been shown to be essential for the viability of M. tuberculosis, but absent from mammals. The M. tuberculosis aroG-encoded 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (mtDAHPS) catalyzes the first committed step in this pathway. Here we describe the PCR amplification, cloning, and sequencing of aroG structural gene from M. tuberculosis H37Rv. The expression of recombinant mtDAHPS protein in the soluble form was obtained in Escherichia coli Rosetta-gami (DE3) host cells without IPTG induction. An approximately threefold purification protocol yielded homogeneous enzyme with a specific activity value of 0.47 U mg-1 under the experimental conditions used. Gel filtration chromatography results demonstrate that recombinant mtDAHPS is a pentamer in solution. The availability of homogeneous mtDAHPS will allow structural and kinetics studies to be performed aiming at antitubercular agents development. © 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water samples (24 untreated water, 12 treated water and 24 served water) used in different stages of the slaughter process were examined to identify a possible source of pathogenic mycobacteria. The isolates were identified based on microscopy, morphological and biochemical features, mycolic acid analysis and molecular method - PCR-restriction-enzyme analysis. Eighteen mycobacterial strains were isolated from 60 water samples: 11 from untreated water, 5 from treated water and 2 from served water. All mycobacteria isolated were identified as Mycobacterium gordonae and showed the following PRA genotypes: III (27.8%), IV (38.9%) and V (33.3%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium fortuitum is a rapidly-growing species of bacteria, ubiquitous in the environment and related to important human mycobacterioses. It has been isolated from blood, abscesses, the endocardium and surgical and traumatic wounds. This mycobacterium is hard to treat, being recognized in the literature as resistant even to the drugs used in the treatment of tuberculosis. The objective of this study was to screen extracts prepared from plants of the Brazilian cerrado (extended savanna-like belt) with known activity against M. fortuitum, employing the Microplate Alamar Blue Assay (MABA) as the analytical method. Out of 26 extracts tested against M. fortuitum, the nonpolar extract of Quassia amara (in methylene dichloride) gave the best result (MIC 62.5μg/ mL), followed by the nonpolar extracts of Syngonanthus macrolepsis, Davilla elliptica and Turnera ulmifolia, with equal MICs of 125μg/ml. The polar extracts (in ethanol and methanol) obtained from the same plants were considered inactive, since the MIC values determined were above 500μg/mL and not significantly different from those of extracts from other plants, without known activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of BCG vaccine (attenuated Mycobacterium bovis) against pulmonary tuberculosis varies enormously among different populations. The prevailing hypothesis attributes this variation to interactions between the vaccine and mycobacteria common in the environment. Studies have revealed that most protective antigens expressed by the antituberculous vaccine are conserved in M. avium, supporting the hypothesis that exposure to environmental mycobacteria generates a cross-reactive immune response that interferes with BCG efficacy. In this study we investigated the effect of a prior exposure to heat-killed M. avium on the immune response and the protective efficacy induced by a genetic vaccine pVAXhsp65 (hsp65 gene from M. leprae inserted in pVAX vector) against experimental tuberculosis. To evaluate the effect on the immune response, female BALB/c mice were initially injected with distinct doses (0.08×106, 4×106, and 200×10 6) of heat-killed M. avium by subcutaneous route. Three weeks later, the animals were immunized with 3 doses of DNAhsp65 by intramuscular route (100μg/15 days apart). Control groups received only M. avium, vaccine (pVAXhsp65), vector (pVAX) or saline solution. Cytokine production and antibody levels were determined by ELISA. To evaluate the effect on the protective efficacy, animals were initially sensitized with 200×106 heat-killed CFU of M. avium by subcutaneous route and then immunized with 3 doses of pVAXhsp65 (100μg/15 days apart) by intramuscular route. Control groups were injected with saline, pVAX (4 doses), pVAXhsp65 (4 doses), M. avium or M. avium plus pVAX (3 doses). Fifteen days after last DNA dose, the animals were infected with 1×104 viable CFU of H37Rv M. tuberculosis by intratracheal route. Thirty days after challenge, the animals were sacrificed and the bacterial burden was determined by counting the number of CFU in the lungs. Lung histological sections were also analyzed. Splenic cells from primed animals produced more IL-5 but less IFN-gamma than non-primed ones. Also, prior contact with M. avium determined higher production of IgG1 and IgG2a anti-hsp65 antibodies in comparison to control groups. However, this higher immune response did not decrease the bacterial burden in the lungs. In addition, prior sensitization with M. avium decreased the parenchyma preservation observed in the group immunized only with pVaxhsp65. These results indicate that environmental mycobacteria can interfere with immunity and protective efficacy induced by DNAhsp65.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice genetically selected for high (H) and low (L) antibody production (Selection IV-A) were used as murine experimental model. The aim of the present work was to evaluate the macrophagic activity and to characterize the immune response in Mycobacterium bovis-AN5 infected mice (3×10 7 bacteria). The response profile previously observed in such strains was not similar to that obtained during M. bovis infection; however, it corroborated works carried out using Selection I, which is very similar to Selection IV-A regarding infection by M. tuberculosis and Bacillus Calmette-Guérin (BCG). Considering bacterial recovery, LIV-A mice showed higher control of the infectious process in the lungs than in the spleen, whereas HIV-A mice presented more resistance in the spleen. With respect to macrophagic activity, hydrogen peroxide (H2O 2) was probably not involved in the infection control since there was an inhibition in the production of this metabolite. Nitric oxide (NO) and TNF-α production seemed to be important in the control of bacterial replication and varied according to the strain, period and organ. Evaluation of the antibody production indicated that the multi-specific effect commonly observed in these strains was not the same in the response to M. bovis. Antibody concentrations were higher in LIV-A than in HIV-A mice at the beginning of the infection, being similar afterwards. Such data were compared with delayed-type hypersensitivity (DTH), which was more intense in HIV-A than in LIV-A mice, indicating that antibody production is independent of the capability to trigger DTH reactions and that cellular and humoral responses to M. bovis antigens show a polygenic control and an independent quantitative genetic regulation. Differences were observed among organs and metabolites, suggesting that different mechanisms play an important role in this infection in natural heterogeneous populations, indicating that NO, TNF-α and Th1 cytokines are involved in the infection control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To highlight the transmission and major phylogenetic clades of Mycobacterium tuberculosis, a retrospective study was carried out at two health facilities in a small agro-industrial area in São Paulo, Brazil, that has a low tuberculosis incidence rate. IS6110-RFLP and spoligotyping were performed on the isolates, with the former revealing that 31.3% (35/112) of strains were clustered. Epidemiological links were found in 16 of the 35 clustered patients and were associated with transmission among patients living in public housing. Spoligotyping grouped 62.8% of the strains. The T genetic family predominated among the isolates. Of interest is that five strains had a pattern characteristic of African or Asian origin (ST535), and two others were of the rare localized type ST1888 (BRA, VEN). In addition, three new types-1889, 1890, and 1891-were identified. Spoligotyping showed that some ST may be circulating to or from Brazil, and RFLP revealed ongoing transmission in inadequately ventilated public-housing buildings. This may point to a failure in tuberculosis control policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mycobacterium tuberculosis cmk gene, predicted to encode a CMP kinase (CMK), was cloned and expressed, and its product was purified to homogeneity. Steady-state kinetics confirmed that M. tuberculosis CMK is a monomer that preferentially phosphorylates CMP and dCMP by a sequential mechanism. A plausible role for CMK is discussed. Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.