78 resultados para Mouse oocyte development
Resumo:
Rhipicephalus sanguineus are bloodsucking ectoparasites, whose main host is the domestic dog, thus being present in urban areas and closely located to people. Eventually, this tick species parasitize humans and can become a potential vector of infectious diseases. Methods to control this type of pest have been the focus of many research groups worldwide. The use of natural products is increasingly considered nowadays, due to the low toxicity levels to the host and low waste generation to the environment. This study tested the effect of ricinoleic acid esters from castor oil (as an potential acaricide) on the reproductive system of R sanguineus females, more specifically on the vitellogenesis process. For this, two groups were established: the control group (CG) and the treatment group (TG) with five rabbits in each (New Zealand White), used as hosts. NaCl and ester were added to rabbits' food and offered to the hosts. After full engorgement, the females were collected and had their ovaries extracted. The ticks ovaries were submitted to histochemical techniques so the effects of esters could be observed over polysaccharides, proteins and lipids yolk. Changes in the deposition of yolk components were observed. This caused modifications on elements of polysaccharide origin and on glycoprotein compounds, interfering in the final yolk synthesis and compromising the development of the future embryo. © 2012.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Candida genus expresses virulence factors that, when combined with immunosuppression and other risk factors, can cause different manifestations of oral candidiasis. The treatment of mucosal infections caused by Candida and the elucidation of the disease process have proven challenging. Therefore, the study of experimentally induced oral candidiasis in rats and mice is useful to clarify the etiopathology of this condition, improve diagnosis, and search for new therapeutic options because the disease process in these animals is similar to that of human candidiasis lesions. Here, we describe and discuss new studies involving rat and mouse models of oral candidiasis with respect to methods for inducing experimental infection, methods for evaluating the development of experimental candidiasis, and new treatment strategies for oral candidiasis. © 2013 Landes Bioscience.
Resumo:
FSH induces expansion of bovine cumulus-oocyte complexes (COCs) in cattle, which can be enhanced by oocyte-secreted factors (OSFs). In this study it was hypothesised that FSH stimulates COC expansion in part from direct stimulation of the epidermal growth factor (EGF)-like ligands amphiregulin (AREG), epiregulin (EREG) and betacellulin (BTC), but also in part through regulation of OSFs or their receptors in cumulus cells. Bovine COCs were cultured in defined medium with graded doses of FSH. In the absence of FSH, COCs did not expand. FSH caused cumulus expansion, and increased the abundance of AREG and EREG mRNA in a time- and dose-dependent manner, but decreased BTC mRNA levels. FSH had modest stimulatory effects on the levels of mRNA encoding the bone morphogenetic protein 15 (BMP15) receptor, BMPR1B, in cumulus cells, but did not alter mRNA expression of the growth and differentiation factor 9 (GDF9) receptor, TGFBR1. More interestingly, FSH dramatically stimulated levels of mRNA encoding two receptors for fibroblast growth factors (FGF), FGFR2C and FGFR3C, in cumulus cells. FSH also stimulated mRNA expression of FGFR1B, but not of FGFR2B in cumulus cells. Based on dose-response studies, FGFR3C was the receptor most sensitive to the influence of FSH. This study demonstrates that FSH stimulates the expression of EGF-like factors in bovine cumulus cells, and provides evidence that FSH differently regulates the expression of distinct receptors for OSFs in cumulus cells. © CSIRO 2013.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Cancer pain severely limits function and significantly reduces quality of life. Subtypes of sensory neurons involved in cancer pain and proliferation are not clear.Methods: We produced a cancer model by inoculating human oral squamous cell carcinoma (SCC) cells into the hind paw of athymic mice. We quantified mechanical and thermal nociception using the paw withdrawal assays. Neurotoxins isolectin B4-saporin (IB4-SAP), or capsaicin was injected intrathecally to selectively ablate IB4(+) neurons or TRPV1(+) neurons, respectively. JNJ-17203212, a TRPV1 antagonist, was also injected intrathecally. TRPV1 protein expression in the spinal cord was quantified with western blot. Paw volume was measured by a plethysmometer and was used as an index for tumor size. Ki-67 immunostaining in mouse paw sections was performed to evaluate cancer proliferation in situ.Results: We showed that mice with SCC exhibited both mechanical and thermal hypersensitivity. Selective ablation of IB4(+) neurons by IB4-SAP decreased mechanical allodynia in mice with SCC. Selective ablation of TRPV1(+) neurons by intrathecal capsaicin injection, or TRPV1 antagonism by JNJ-17203212 in the IB4-SAP treated mice completely reversed SCC-induced thermal hyperalgesia, without affecting mechanical allodynia. Furthermore, TRPV1 protein expression was increased in the spinal cord of SCC mice compared to normal mice. Neither removal of IB4(+) or TRPV1(+) neurons affected SCC proliferation.Conclusions: We show in a mouse model that IB4(+) neurons play an important role in cancer-induced mechanical allodynia, while TRPV1 mediates cancer-induced thermal hyperalgesia. Characterization of the sensory fiber subtypes responsible for cancer pain could lead to the development of targeted therapeutics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oocyte maturation is a complex process involving nuclear and cytoplasmic maturation. The nuclear maturation is a chromosomal segregation and the cytoplasmic maturation involves the reorganization of the cytoplasmic organelles, mRNA transcription and storage of proteins to be used during fertilization and early embryo development. The mechanism of oocyte maturation in vivo and in vitro still are not totally understood. However it is generally accepted that the second messenger cyclic adenosine monophosphate (cAMP) plays a critical role in the maintenance of meiotic blockage of mammalian oocytes. A relative increase in the level of cAMP within the oocyte is essential for maintaining meiosis block, while a decrease in cAMP oocyte concentration allows the resumption of meiosis. The oocyte cAMP concentration is regulated by a balance of two types of enzymes: adenylate cyclase (AC) and phosphodiesterases (PDEs), which are responsible for the synthesis and degradation of cAMP, respectively. After being synthesized by AC in cumulus cells, cAMP are transferred to the oocyte through gap junctions. Thus, specific subtypes PDEs are able to inhibit or attenuate the spontaneous meiotic maturation of oocytes with PDE4 primarily involved in the metabolism of cAMP in granulosa cells and PDE3 in the oocyte. Although the immature oocytes can resume meiosis in vitro, after being removed from antral follicles, cytoplasmic maturation seems to occur asynchronously with nuclear maturation. Therefore, knowledge of the oocyte maturation process is fundamental for the development of methodologies to increase the success of in vitro embryo production and to develop treatments for various forms of infertility. This review will present current knowledge about the maintenance of the oocyte in prophase arrest, and the resumption of meiosis during oocyte maturation, focusing mainly on the changes that take place in the oocyte.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)