79 resultados para Mobile robots -- Control system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delayed feedback (DF) control is a well-established technique to suppress single frequency vibration of a non-minimum phase system. Modal control is also a well-established technique to control multiple vibration modes of a minimum phase system. In this paper these techniques are combined to simultaneously suppress multiple vibration modes of a non-minimum phase system involving a small time delay. The control approach is called delayed resonant feedback (DRF) where each modal controller consists of a modal filter to extract the target mode signal from the vibration response, and a phase compensator to account for the phase delay of the mode. The methodology is first discussed using a single mode system. A multi-mode system is then studied and experimental results are presented to demonstrate the efficacy of the control approach for two modes of a beam. It is shown that the system behaves as if each mode under control has a dynamic vibration absorber attached to it, even though the actuator and the sensor are not collocated and there is a time delay in the control system. © 2013 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multisensor data fusion is a technique that combines the readings of multiple sensors to detect some phenomenon. Data fusion applications are numerous and they can be used in smart buildings, environment monitoring, industry and defense applications. The main goal of multisensor data fusion is to minimize false alarms and maximize the probability of detection based on the detection of multiple sensors. In this paper a local data fusion algorithm based on luminosity, temperature and flame for fire detection is presented. The data fusion approach was embedded in a low cost mobile robot. The prototype test validation has indicated that our approach can detect fire occurrence. Moreover, the low cost project allow the development of robots that could be discarded in their fire detection missions. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent trend in networked control systems (NCSs) is the use of wireless networks enabling interoperability between existing wired and wireless systems. One of the major challenges in these wireless NCSs (WNCSs) is to overcome the impact of the message loss that degrades the performance and stability of these systems. Moreover, this impact is greater when dealing with burst or successive message losses. This paper discusses and presents the experimental results of a compensation strategy to deal with this burst message loss problem in which a NCS mathematical model runs in parallel with the physical process, providing sensor virtual data in case of packet losses. Running in real-time inside the controller, the mathematical model is updated online with real control signals sent to the actuator, which provides better reliability for the estimated sensor feedback (virtual data) transmitted to the controller each time a message loss occurs. In order to verify the advantages of applying this model-based compensation strategy for burst message losses in WNCSs, the control performance of a motor control system using CAN and ZigBee networks is analyzed. Experimental results led to the conclusion that the developed compensation strategy provided robustness and could maintain the control performance of the WNCS against different message loss scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from Theodorsen's theory. The mathematical model is written in the state space representation using rational function approximation to write the aerodynamic forces in time domain. The control system is designed using the fuzzy Takagi-Sugeno modeling to compute a feedback control gain. It useds Lyapunov's stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem. Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems with discontinuous nonlinearities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an experimental study into the vibration control of a servo system comprising a servo motor and a flexible manipulator. Two modes of the system are controlled by using the servo motor and an accelerometer attached to the tip of the flexible manipulator. The control system is thus non-collocated. It consists of two electrical dynamic absorbers, each of which consists of a modal filter and, in case of an out-of-phase mode, a phase inverter. The experimental results show that each absorber acts as a mechanical dynamic vibration absorber attached to each mode and significantly reduces the settling time for the system response to a step input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AEDROMO (Experimental and Didactic Environment with Mobile Robots) is a versatile, user friendly and scalable environment that supports a wide range of experiments. In it there is an area that is similar to a desk where objects can interact with each other, including robots and other objects, and thus can perform numerous activities. In it's current state, AEDROMO has client computers that interact with the system through an interface, and thus realize the communication between the user and AEDROMO. This project offer support to create a new form of interface for AEDROMO and can therefore be used for devices running Android, the app developed in this project will serve as a basis for future work on this new interface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional model of teaching little is modernized in recent decades. When in contact with this system, it is normal that the new-generation students feel unmo tivated in carrying out the proposed activities in the classroom. Considers Prensky (2001) these students, called Digital Natives, born with a modern way of thinking and learn and feel encouraged and motivated with activities that invite to interact. For this reason, it has been proposed the development of an object of learning in the form of application for Android tablets, exploring the internal sensors available in them, with the purpose of offering an interactive activity to students on the physical concepts involved in the process of photosynthesis in plants. For the construction, informational texts written in didactic language and easy to understand, illustrative images and animations were employed. In addition, we used the light sensor in the interactive activity on the process of photosynthesis so that the student could observe and understand how the environment is able to interfere with this process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work was developed a program capable of performing automatic counting of vehicles on roads. The problem of counting vehicles is using expensive techniques for its realization, techniques which often involve manual counting or degradation of the pavement. The main motivation for this work was the importance that the vehicle counting represents to the Traffic Engineer, being essential to analyze the performance of the roads, allowing to measure the need for installation of traffic lights, roundabouts, access ways, among other means capable of ensuring a continuous flow and safe for vehicles. The main objective of this work was to apply a statistical segmentation technique recently developed, based on a nonparametric linear regression model, to solve the segmentation problem of the program counter. The development program was based on the creation of three major modules, one for the segmentation, another for the tracking and another for the recognition. For the development of the segmentation module, it was applied a statistical technique combined with the segmentation by background difference, in order to optimize the process. The tracking module was developed based on the use of Kalman filters and application of simple concepts of analytical geometry. To develop the recognition module, it was used Fourier descriptors and a neural network multilayer perceptron, trained by backpropagation. Besides the development of the modules, it was also developed a control logic capable of performing the interconnection among the modules, mainly based on a data structure called state. The analysis of the results was applied to the program counter and its component modules, and the individual analysis served as a means to establish the par ameter values of techniques used. The find result was positive, since the statistical segmentation technique proved to be very useful and the developed program was able to count the vehicles belonging to the three goal..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)