85 resultados para Magnetic fields.
Resumo:
Magnetic resonance imaging (MRI), which is studied since 1938, is a technique used in medicine to produce high quality images from inside the human body. These images are produced non-invasively and without ionizing radiation. In addition, MRI is an extremely flexible technique, with which it is possible to produce images with different contrasts that provide different information about the anatomy, structure and function of the human body, and it is therefore one of the techniques preferred by radiologists. The phenomenon of MRI is based on the interaction of magnetic fields with the nuclear spins of the scanned sample. In this work a detailed study of the technique of magnetic resonance imaging is presented, with a description of the main features of the images produced by the technique and an analysis of its application to the fields of applications Neurology and Neuroscience
Resumo:
The gastrointestinal tract is the main route of nutrients absorption and drugs delivery. Is important to know the parameters related to the tract, like gastric emptying and gastrointestinal transit, in order to better understand the behavior of different kind of meals or drugs passing through the GIT. Many techniques are used to study these parameters, such as manometry, scintigraphy, phenol red, activated charcoal and carbon-13 reading. However, these methods use radiation, are invasive and require animal sacrifice. As an alternative proposal, the Alternate Current Biosusceptometry (ACB), a magnetic technique, has proved to be effective for these studies with small animals, in a noninvasive way, low cost, radiation free and avoiding the animal death. Associating the ACB to magnetic micro or nanoparticles used as tracers, it is possible to observe the meal behavior inside of the GIT. Focusing meanly on liquid meals digestion, this paper had the objective to evaluate the efficiency of the ACB technique in gastric emptying and gastrointestinal transit evaluation of liquid meals in rats. To perform the experiments, magnetic nanoparticles (ferrite, MgFe2O4) were used on a 1,5 ml solution introduced by gavage on similar weight and age rats. The sensor made by 2 pairs of coils, capable of generating and detecting magnetic fields, creates a field on the interest place and when this field is in contact with the marked meal, it changes, resulting on a variation of the measured voltage. The voltage variation is analyzed and is obtained a particle concentration on the interest region. The results showed that is possible to apply the ACB technique on the GIT evaluation of liquid particles digestion, gastric emptying and meal cecum arrival time curves were obtained and from that, is possible to observe a pattern of gastrointestinal transit. Both mean process time values were acquired, proving the technique capability of ...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Plasma immersion ion implantation (PIII) with low external magnetic field has been investigated both numerically and experimentally. The static magnetic field considered is essentially nonuniform and is generated by two magnetic coils installed outside the vacuum chamber. Experiments have been conducted to investigate the effect of two of the most important PIII parameters: target voltage and gas pressure. In that context, it was found that the current density increased when the external parameters were varied. Later, the PIII process was analyzed numerically using the 2.5-D computer code KARAT. The numerical results show that the system of crossed E x B fields enhances the PIII process. The simulation showed an increase of the plasma density around the target under the operating and design conditions considered. Consequently, an increase of the ion current density on the target was observed. All these results are explained through the mechanism of gas ionization by collisions with electrons drifting in crossed E x B fields.
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Magnetic properties of two spinel oxides solid solutions, Cul+xMn2-xO4 and Ni1+xMn2-xO4 are reported. These series are characterized by two magnetic transitions: the upper one, of ferrimagnetic type, occurs at about 85 K (for copper-based) and at 105-110 K (for nickel-based spinels), independently of the x-content: the lower transition may be related to a Neel-type collinear ordering and takes place at 30 and 45 K, respectively. Application of moderate fields (H > 250 Oe) make both transitions to merge into one broad maximum in the magnetization, which takes place at lower temperature when applying larger fields. Magnetization cycles with temperature (ZFC/FC) or field (loops) allowed us to well characterize the ordered state. The effective moment follows the expected behavior when manganese ions are being substituted by ions of lower magnetic moment (Ni(2+)andCU(2+)). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
The solar events that occurred at the end of October 2003 gave rise to very strong geomagnetic disturbances that peaked twice with Dst values reaching -345 nT around 0000 UT on 30 October and -400 nT around 2300 UT, on the same day. Disturbances in several ionospheric parameters were observed over Brazil. This work will focus on the ionospheric response to the initial westward prompt penetration electric field and on the strong intensification of the equatorial ionization anomaly that occurred because of the electric field polarity reversal that followed in the early morning hours of 29 October. The F layer peak height over the equator first decreased under the strong prompt penetration westward electric field, which was followed by significant height increase under eastward electric field. We have used Sheffield University Plasmasphere Ionosphere Model (SUPIM) with an intensified westward disturbed electric field in the presunrise hours, presumably due to prompt penetration from the magnetosphere, in order to study the effect of such a field in the ionosphere. The simulation results showed that prompt penetration of magnetospheric electric fields of westward polarity to the nightside equatorial region seems to be the most probable cause of the initial F layer height decreases. The intensification of the equatorial ionization anomaly and the unusual enhancement on F layer peak density, which was not modeled by the SUPIM, are explained as caused by the strong eastward electric field that followed the initial phase in combination with a highly variable disturbed meridional/transequatorial wind system as inferred from the F2 layer peak height variations. The highly dynamic wind pattern, with a short-term response (2-4 hours), is compatible with the predictions of some previous theoretical model calculations reported in the literature.