84 resultados para Latter lanthanides and yttrium
Resumo:
Background and objectives: To assess the microhardness of dentin subsurface after Er:yttrium-aluminum-garnet (YAG) and Nd:YAG laser irradiation. Study design/materials and methods: Twenty-four bovine incisors, without pulp, were used. The vestibular surface was worn out until the dentin was reached and divided in mesial and distal regions. The samples were divided into two groups: GI-distal, irradiated by Er: YAG laser, and GII-distal, irradiated by Nd: YAG laser. The mesial area was protected so as to not receive the laser irradiation. The measurements were made on Vickers digital microhardmeter. Results: For GI-there was no significant statistical difference, Cl(-4.59 to 0.78), between the values of irradiated (55.61 +/- 4.38) and unirradiated (57.51 +/- 4.00) areas. For GII-the values were higher for the irradiated (62.21 +/- 6.48) compared to the unirradiated (57.82 +/- 5.42) area, CI(1.65 +/- to 7.13). Conclusions: There was an increase of dentin microhardness when the Nd: YAG was used, but the Er: YAG did not cause significant alterations in dentin microhardness. (c) 2007 Laser Institute of America.
Resumo:
In this paper, we report luminescent and morphological studies with yttrium oxide samples doped with ytterbium and erbium. The samples were prepared by the combustion method and also from different precursors: oxalate, basic carbonate and polymeric resin. All powders were identified Lis being an yttrium oxide with a C-form structure, independent of the employed precursor. From mean crystallite size measurements, it was verified that oxides prepared through the polymeric precursor and combustion methods lead to the smallest crystallite size. Particle shape and size were investigated by SEM and TEM, and showed that both the oxalate precursor and the combustion methods do not provide oxide materials of suitable shape or size, on the other hand. The basic carbonate and polymeric precursors resulted in spherically shaped particles with an average diameter of 90 and 15 run. respectively, Upon 980 run diode laser excitation, green and red emission lines were detected for all samples and were assigned to the H-2(11/2) S-4(3/2) -> I-4(15/2) and (4)Fg(9/2) -> 4I(15/12) transitions, respectively. Such transitions are characteristic for Er3+ and result from energy transfer from Yb3+ energy levels, F-2(7/2) -> F-2(5/2). A relationship between the decrease in the mean crystallite size and the enhancement in red emission was also established as well as the influence of the presence of a high percentage of Yb-3 Both factors promote ET from Yb3+ (F-2(5/2)) to Er3+ (I-4(11/2)). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Solid-state Ln-4-MeO-Bz compounds, where Ln stands for trivalent Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, phase transition, coordination mode, structure, thermal behaviour and thermal decomposition of the isolated compounds. The phase transition observed in the some compounds has been reported for the first time. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Various properties of particles can be altered by coating them with a layer of different chemical composition. Yttrium iron garnet (YIG) particles has been coated with silica for control of their sintering, corrosion resistance, and stabilization of magnetic properties. This silica cover was obtained by hydrolysis of tetraethylorthosilicate (TEOS) in 2-propanol. This material was characterized by transmission (TEM) electron microscopy, (XEDS) X-ray energy-dispersive spectrometry, (XPS) X-ray photoemission spectroscopy and (VSM) vibrating sample magnetometry. YIG was heterocoagulated by silica as indicated by TEM micrographies. XPS measurements indicated that only binding energy for silicon and oxygen was found on the silica shell, which confirms that the YIG was covered. The values of the saturation magnetization differ from the heterocoagulated system to well-crystallized YIG.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The protonation constants of 4-methylbenzylidenepyruvate (4Me-BP) and 4-isopropylbenzylidenepyruvate (4IP-BP) as well as the stability constants of their binary 1:1 complexes with Cu(II), La(III), Pr(III), Sm(III), Eu(III), Yb(III), Sc(III) and Th(IV) have been determined spectrophotometrically in aqueous solution at 25°C and ionic strength 0.500 M, maintained with sodium perchlorate. For all metal ions considered, the stability changes move in the same direction as the pKa of the ligands. Linear free energy relationships, as applied to oxygen donor substances, suggest the -COCOO- moiety as the metal binding site of the ligands. The results are discussed mainly taking into account that benzylidenepyruvates, besides the α-keto canonical form, may display other forms in aqueous solution with changing pH and the possible occurrence of extra intra-ligand charge polarization, induced by metal ions.
Resumo:
Some new compounds of cinnamic acid with lighter trivalent lanthanides were prepared in the solid state. The compounds have general formula ML3·H2O, where L is cinnamate (C6H5-CH=CH-COO-) and M is La, Ce, Pr, Nd or Sm. Thermogravimetry, derivative thermogravimetry, differential scanning calorimetry, infrared absorption spectra and X-ray diffraction powder patterns were used to characterize and to study the thermal stability and thermal decomposition of these compounds.
Resumo:
The purpose of this work is to obtain spherical particles yttrium iron garnet (YIG) by coprecipitation technique. The spherical particles were obtained from either nitrate or chloride salt solutions by controlling the precipitation medium. Different agents of dispersion such as PVP and ammonium iron sulfate were used to optimize the shape and size of YIG. Samples were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results show that the samples phase transition takes place at 850°C (orthorhombic phase) and at 1200°C (cubic phase). Spherical shape particles, with diameter of around 0.5 μm, present magnetization values close to the bulk value (26 emu g -1). © 2001 Elsevier Science B.V. All rights reserved.