221 resultados para LACTIC ACID BACTERIA
Resumo:
This study aimed to evaluate the efficiency of natural biocides, brown and green propolis, for the control of bacterial contamination in the production of sugarcane spirit. The treatments consisted of brown and green propolis extracts, ampicillin, and a control and were assessed at the beginning and end of harvest season in ten fermentation cycles. In the microbiological analyses, the lactic acid bacteria were quantified in the inoculum before and after the treatment with biocides, and the viability of yeast cells during fermentation was evaluated. The levels of acids, glycerol, total residual reducing sugars, and ethanol were analyzed for the wine resulting from each fermentation cycle. A reduction in the number of bacterial contaminants in the inoculum in the treatments with the natural biocides was observed, but it did not affect the viability of yeast cells. The control of the contaminants led to the production of higher levels of ethanol and reduced acidity in the wine produced. The results of the use of brown and green propolis to control the growth microorganisms in the fermentation of sugarcane spirit can be of great importance for using alternative strategies to synthetic antibacterials in fermentation processes including other distilled beverage or spirits.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The ingestion of probiotic lactic acid bacteria has been evaluated and noted that it has an effect on the balance of desirable microbiota in the gastrointestinal tract. Lactobacillus gasseri demonstrates good survival in the gastrointestinal tract, and it has been associated with a variety of probiotic activities and roles, including the reduction of fecal mutagenic enzymes, the production of bacteriocins and the stimulation of macrophages immunomodulation. The aim of the study was to evaluate the effects of a pool of L. gasseri strains isolated from the feces of breastfed infants added in the human milk of healthy women. The milk was both pasteurized and unpasteurized, to verify the cell cytotoxicity of macrophages and to quantify the production of immunologic mediators such as IL-4, IL-6, IFN-g, TNF-a, NO and oxygen intermediary compounds (H2O2). The administration of raw human milk and pasteurized human milk to infants is a regular, encouraged practice in units of intensive therapy (UITs) and our present investigation verified the beneficial effect of addition of a pool of L. gasseri to pasteurized human milk (PHML). Our results show that probiotic supplementation helped to maintain cell viability, reduced IL-6 and IFN-γ production and stimulated TNF-α, NO, H2O2, IL-4 production. Nevertheless, the results indicate that the addition of lactobacillus to human milk was not a determinant in the production of TNF-α. L. gasseri added to breast milk did not present a cytotoxic risk, and the addition of L. gasseri to pasteurized milk of human milk bank would benefit newborns that depend on milk banks for the colonization of more desirable microbiota.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sensorial and microbiological characteristics of a Brazilian fresh cheese samples with Bifidobacterium animalis subps. lactis as well as samples with this probiotic and polydextrose, a prebiotic ingredient, were evaluated. The addition of this microorganism was studied as: (1) lyophilized probiotic added to cheese curd and (2) by using milk previously fermented by this probiotic to produce the cheese. Cheese samples were microbiologically characterized after 0, 7, 14, 21 and 28 days of storage at a temperature of 4 °C. The microbiological analyses conducted were quantification of total lactic acid bacteria, mesophilic microorganisms, Bif. animalis subps. lactis, coliforms at 30 °C and 45 °C. Affective sensory test was conducted for two different cheese samples (with probiotic and with probiotic and prebiotic) as well as for control one week after manufacturing date. Cheese samples provided acceptable results for coliform counts at 30 °C and 45 °C in compliance with legislation. The cheese samples produced using milk fermented by probiotic showed counts of 107 -108 CFU/g after 28 days of storage, which assures functional property for this product to be claimed.
Resumo:
The aim of this work was to compare the efficiency of conventional antibiotics in relation to hop-based antimicrobials, in industrial-scale bioethanol production. The comparison was made by calculating the lactic acid bacteria population reduction in two consecutive fermentation cycles. To conduct the experiment, it was used five treatments (three conventional antibiotics: Kamoran WP, Corstan and Alcapen 1030, and two hop-based antimicrobials: BetaBio and IsoStab). The samples were collected in the fermentation vat. In order to quantify the initial lactic acid bacteria population, a sample was collected at the end of the fermentation process (wine) before the treatment with antibiotics or antimicrobials, and to determine the final population, another sample was collected at the end of the fermentation process (wine) after the treatment with antibiotics or antimicrobials. The experiment was completely randomized and the statistical analysis was performed through analysis of variance (ANOVA) for data processed using the equation y’ = . After the data transformation, the Levene's test was applied to verify data adherence to normal distribution, and the averages were compared through Tukey’s test at 5% probability. The results showed that the hop-based antimicrobials (IsoStab and BetaBio) can be used to substitute the conventional antibiotics (Kamoran, Alcapen and Corstan), since there was no statistical difference between the treatments.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this trial was to evaluate the nutritional value, fermentation profile and dry matter losses of Palisadegrass silages ensiled with either dried citrus pulp, soybean hulls, chemical or microbial additives. The trial was carried out in a completely randomized experimental design and in a factorial arrangement (3 x 5), with three dry matter levels (wet forage or forage ensiled with pelleted citrus pulp or pelleted soybean hulls) and five additives (without or with the presence of bacterial inoculants or the addition of: sodium benzoate, formic acid in the concentration of 62% or 44%), totalizing 15 treatments and 60 experimental silos. The variables analyzed were: nutritional value, losses due to gases and effluents, and dry matter recovery. The use of dried citrus pulp or soybean hulls at the ensiling time increased the dry matter content (29.4 and 28,9%) and decreased the effluent production (4.1 and 3.8 kg/t of fresh matter), also providing fermentable substrate to microorganisms, resulting in increased fermentation coefficient and digestibility of silages. The use of formic acid resulted in silages with higher digestibility and increased water-soluble carbohydrates and crude protein content. This additive was also effective in reducing the losses due to gases and, as a result, increased the total dry matter recovery. The treatment containing homolactic bacteria showed similar trend of increasing the digestibility and reducing the losses due to gases. The use of sodium benzoate was less effective in altering the fermentation pattern of tropical silages. The nutritional value and total dry matter losses of silages ensiled without additives can be considered satisfactory. However, wet forage ensiled with dried citrus pulp and, mainly, with soybeans hulls showed the best results. Treatments containing formic acid had a beneficial effect on the fermentation profile of tropical grass silages.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Plants naturally produce secondary metabolites that can be used as antimicrobials. The aim of this study was to assess the effects of Psidium cattleianum leaf extract on Streptococcus mutans. The extract (100%) was obtained by decoction of 100 g of leaves in 600 ml of deionized water. To assess killing, S. mutans biofilms were treated with water (negative control) or various extract dilutions [ 100, 50, 25% (v/v) in water] for 5 or 60 min. To evaluate the effect on protein expression, biofilms were exposed to water or 1.6% (v/v) extract for 120 min, proteins were extracted and submitted to 2-dimensional difference gel electrophoresis. Differentially expressed proteins were identified by mass spectrometry. The effect of 1.6% (v/v) extract on acid production was determined by pH measurements and compared to a water control. Viability was similar after 5 min of treatment with the 100% extract or 60 min with the 50% extract (about 0.03% survival). There were no differences in viability between the biofilms exposed to the 25 or 50% extract after 60 min of treatment (about 0.02% survival). Treatment with the 1.6% extract significantly changed protein expression. The abundance of 24 spots was decreased compared to water (p < 0.05). The extract significantly inhibited acid production (p < 0.05). It is concluded that P. cattleianum leaf extract kills S. mutans grown in biofilms when applied at high concentrations. At low concentrations it inhibits S. mutans acid production and reduces the expression of proteins involved in general metabolism, glycolysis and lactic acid production. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Many plants are used in traditional medicine as active agents against various effects induced by snakebite. The methanolic extract from Cordia verbenacea (Cv) significantly inhibited paw edema induced by Bothrops jararacussu snake venom and by its main basic phospholipase A(2) homologs, namely bothropstoxins I and II (BthTXs). The active component was isolated by chromatography on Sephadex LH-20 and by RP-HPLC on a C18 column and identified as rosmarinic acid (Cv-RA). Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid [2-O-cafeoil-3-(3,4-di-hydroxy-phenyl)-R-lactic acid]. This is the first report of RA in the species C. verbenacea ('baleeira', 'whaler') and of its anti-inflammatory and antimyotoxic properties against snake venoms and isolated toxins. RA inhibited the edema and myotoxic activity induced by the basic PLA(2)s BthTX-I and BthTX-II. It was, however, less efficient to inhibit the PLA(2) activity of BthTX-II and, still less, the PLA(2) and edema-inducing activities of the acidic isoform BthA-1-PLA(2), from the same venom, showing therefore a higher inhibitory activity upon basic PLA(2)s. RA also inhibited most of the myotoxic and partially the edema-inducing effects of both basic PLA(2)s, thus reinforcing the idea of dissociation between the catalytic and pharmacological domains. The pure compound potentiated the ability of the commercial equine polyvalent antivenom in neutralizing lethal and myotoxic effects of the crude venom and of isolated PLA(2)s in experimental models. CD data presented here suggest that, after binding, no significant conformation changes occur either in the Cv-RA or in the target PLA(2). A possible model for the interaction of rosmarinic acid with Lys49-PLA(2) BthTX-I is proposed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the microbial action in soil on poly(L-lactic acid) (PLLA) and polyvinyl chloride (PVC) films and a PLLA/PVC 7 : 3 blend, using Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). The films (50 mu m) were obtained from the evaporation of dichloromethane solutions and buried in soil columns, in controlled conditions, for 120 days. The results showed that the surface of the PLLA films and blend became 18 and 31% more hydrophilic, respectively. The morphology of the films also changed after 120 days of microbial treatment, particularly that of the PLLA phase in the blend, confirmed by structural and conformational changes in the FTIR CO region at 12001000 cm1 and an increase in the relative intensity of the band at 1773 cm1, which was attributed to C O group vibration due to a rotational isomer in the interlamellar region (semi-ordered region). Besides the biotreated PVC presented changes in the C-Cl band at 738 cm1, due to the presence of some PVC conformational isomer. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012