207 resultados para Hasse invariant
Resumo:
We show that the usual vector meson dominance method does not apply directly to the mixing of a color-octet vector boson (color-octet technirho) with the gluon because of gauge invariance. We propose a gauge invariant method where one works in a physical basis with mass eigenstate fields, As a result, we show that the physical technirho does not couple to two gluons, contrary to the general belief, Consequences for the production of a pair of color-octet, isosinglet technipions (technietas) at Fermilab is analyzed by means of a simulation of the signal and background, including kinematical cuts. We find that the signal is too small to be observed. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
The covariant quark model of the pion based on the effective nonlocal quark-hadron Lagrangian involving nonlocality induced by instanton fluctuations of the QCD vacuum is reviewed. Explicit gauge invariant formalism allows us to construct the conserved vector and axial currents and to demonstrate their consistency with the Ward-Takahashi identities and low-energy theorems. The spontaneous breaking of chiral symmetry results in the dynamic quark mass and the vertex of the quark-pion interaction, both momentum-dependent. The parameters of the instanton vacuum, the average size of the instantons, and the effective quark mass are expressed in terms of the vacuum expectation values of the lowest dimension quark-gluon operators and low-energy pion observables. The transition pion form factor for the processes gamma*gamma --> pi (0) and gamma*gamma* --> pi (0) is analyzed in detail. The kinematic dependence of the transition form factor at high momentum transfers allows one to determine the relationship between the light-cone amplitude of the quark distribution in the pion and the quark-pion vertex function. Its dynamic dependence implies that the transition form factor gamma*gamma --> pi (0) at high momentum transfers is acutely sensitive to the size of the nonlocality of nonperturbative fluctuations in the QCD vacuum. In the leading twist, the distribution amplitude and the distribution function of the valence quarks in the pion are calculated at a low normalization point of the order of the inverse average instanton size rho (-1)(c). The QCD results are evolved to higher momentum transfers and are in reasonable agreement with available experimental data on the pion structure.
Resumo:
Within a wide class of models, the CERN LEP2 lower limit of 95 GeV on the chargino mass implies gluinos are heavier than similar to 300 GeV. In this case electroweak (W) over tilde(1)(W) over tilde(1) production and (W) over tilde(1)(Z) over tilde(2) production are the dominant supersymmerry (SUSY) processes at the Fermilab Tevatron, and the extensively examined isolated trilepton signal From (W) over tilde(1)(Z) over tilde(2) production assumes an even greater importance. We update our previous calculations of the SUSY reach of luminosity upgrades of the Fermilab Tevatron in this channel incorporating (i) decay matrix elements in the computation of the momenta of leptons from chargino and neutralino decays, (ii) the trilepton background from W*Z* and W*gamma* production which, though neglected in previous analyses, turns out to be the dominant background, and finally, (iii) modified sets of cuts designed to reduce these new backgrounds and increase the range of model parameters for which the signal is observable. We show our improved projections for the reach for SUSY of both the Fermilab Main Injector and the proposed TeV33 upgrade. We also present opposite sign same flavor dilepton invariant mass distributions as well as the p(T) distributions of leptons in SUSY trilepton events, and comment upon how the inclusion of decay matrix elements impacts upon the Tevatron reach, as well as upon the extraction of neutralino masses.
Resumo:
To estimate realistic cross sections in ultra peripheral heavy ion collisions we must remove effects of strong absorption. One method to eliminate these effects make use of a Glauber model calculation, where the nucleon-nucleon energy dependent cross sections at small impact parameter are suppressed. In another method we impose a geometrical cut on the minimal impact parameter of the nuclear collision ((b)min > R-1 + R-2, where R-i is the radius of ion 'i'). In this last case the effect of a possible nuclear radius dependence with the energy has not been considered in detail up to now. Here we introduce this effect showing that for final states with small invariant mass the effect is negligible. However when the final state has a relatively large invariant mass, e.g., an intermediate mass Higgs boson, the cross section can decrease up to 50%. (C) 2003 Published by Elsevier B.V.
Resumo:
The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.
Resumo:
We outline a comprehensive study of spin-0 glueball properties which, in particular, keeps track of the topological gluon structure. Specifically, we implement (semi-hard) topological instanton physics as well as topological charge screening in the QCD vacuum into the operator product expansion (OPE) of the glueball correlators. A realistic instanton size distribution and the (gauge-invariant) renormalization of the instanton contributions are also implemented. Predictions for 0(++) and 0(-+) glueball properties are presented.
Resumo:
Scale-invariant running couplings are constructed for several quarks being decoupled together, without reference to intermediate thresholds. Large-momentum scales can also be included. The result is a multi-scale generalization of the renormalization group applicable to any order. Inconsistencies in the usual decoupling procedure with a single running coupling can then be avoided, e.g., when cancelling anomalous corrections from t, b quarks to the axial charge of the proton. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The addition of a topologically massive term to an admittedly nonunitary three-dimensional massive model, be it an electromagnetic system or a gravitational one, does not cure its nonunitarity. What about the enlargement of avowedly unitary massive models by way of a topologically massive term? the electromagnetic models remain unitary after the topological augmentation but, surprisingly enough, the gravitational ones have their unitarity spoiled. Here we analyze these issues and present the explanation why unitary massive gravitational models, unlike unitary massive electromagnetic ones, cannot coexist from the viewpoint of unitarity with topologically massive terms. We also discuss the novel features of the three-term effective field models that are gauge-invariant.
Resumo:
We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.
Resumo:
Conditions for CP violation in the scalar potential sector of general N-Higgs-doublet models are analyzed from a group theoretical perspective. For the simplest two-Higgs-doublet model potential, a minimum set of conditions for explicit and spontaneous CP violation is presented. The conditions can be given a clear geometrical interpretation in terms of quantities in the adjoint representation of the basis transformation group for the two doublets. Such conditions depend on CP-odd pseudoscalar invariants. When the potential is CP invariant, the explicit procedure to reach the real CP-basis and the explicit CP transformation can also be obtained. The procedure to find the real basis and the conditions for CP violation are then extended to general N-Higgs-doublet model potentials. The analysis becomes more involved and only a formal procedure to reach the real basis is found. Necessary conditions for CP invariance can still be formulated in terms of group invariants: the CP-odd generalized pseudoscalars. The problem can be completely solved for three Higgs-doublets.
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
A special relativity based on the de Sitter group is introduced, which is a theory that might hold up in the presence of a non-vanishing cosmological constant. Like ordinary special relativity, it retains the quotient character of spacetime, and a notion of homogeneity. As a consequence, the underlying spacetime will be a de Sitter spacetime, whose associated kinematics will differ from that of ordinary special relativity. The corresponding modified notions of energy and momentum are obtained, and the exact relationship between them, which is invariant under a re-scaling of the involved quantities, explicitly exhibited. Since the de Sitter group can be considered a particular deformation of the Poincare group, this theory turns out to be a specific kind of deformed (or doubly) special relativity. Some experimental consequences, as well as the causal structure of spacetime-modified by the presence of the de Sitter horizon-are briefly discussed.
Resumo:
In this paper, we explicitly construct an infinite number of Hopfions (static, soliton solutions with nonzero Hopf topological charges) within the recently proposed (3 + 1)-dimensional, integrable, and relativistically invariant field theory. Two integers label the family of Hopfions we have found. Their product is equal to the Hopf charge which provides a lower bound to the soliton's finite energy. The Hopfions are explicitly constructed in terms of the toroidal coordinates and shown to have a form of linked closed vortices.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
Using the U(4) formalism developed ten years ago, the worldsheet action for the superstring in Ramond-Ramond plane wave backgrounds is expressed in a manifestly N = (2, 2) superconformally invariant manner. This simplifies the construction of consistent Ramond-Ramond plane wave backgrounds and eliminates the problems associated with light-cone interaction point operators.