147 resultados para HYPOXIA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Correspondendo a apenas 2% do peso corpóreo, o cérebro apresenta taxa metabólica superior à maioria dos demais órgãos e sistemas. A maior parte do consumo energético encefálico ocorre no transporte iônico para manutenção do potencial de membrana celular. Praticamente desprovido de estoques, os substratos energéticos para o encéfalo são fornecidos necessariamente pela circulação sanguínea.O suprimento desses substratos sofre também a ação seletiva da barreira hemato-encefálica (BHE). O principal substrato, que é a glicose, tem uma demanda de 150 g/dia (0,7 mM/g/min). A metabolização intracelular parece ser controlada pela fosfofrutoquinase. A manose e os produtos intermediários do metabolismo (frutose 1,6 bifosfato, piruvato, lactato e acetato) podem substituir, em parte, a glicose, quando os níveis sangüíneos desta encontram-se elevados. Quando oxidado, o lactato chega a responder por 21% do consumo cerebral de Ov em situações de isquemia e inflamação infecciosa, o tecido cerebral passa de consumidor a produtor de lactato. Os corpos cetônicos também podem reduzir as necessidades cerebrais de glicose desde que oferecidos em quantidades suficientes ao encéfalo. Entretanto, devem ser considerados como um substrato complementar e nunca alternativo da glicose, pois comprometem a produção cerebral de succinil CoA e GTP. Quanto aos demais substratos, embora apresentem condições metabólicas, não existem demonstrações consistentes de que o cérebro produza energia a partir dos ácidos graxos sistêmicos, mesmo em situações de hipoglicemia. de maneira análoga, etanol e glicerol são considerados apenas a nível de experimentação. A utilização dos aminoácidos é dependente da sua captação, limitada tanto pela baixa concentração sangüínea, como pela seletividade da BHE. A maior captação ocorre para os de cadeia ramificada e destes, a valina. A menor captação é a de aminoácidos sintetizados no cérebro (aspartato,gluconato e alanina). Todos podem ser oxidados a CO, e H(2)0. Entretanto, mesmo com o consumo de glicose reduzido a 50%, a contribuição energética dos aminoácidos não ultrapassa 10%. Para manter o suprimento adequado de glicose e oxigênio, o fluxo sangüíneo cerebral é da ordem de 800 ml/min (15% do débito cardíaco). O consumo de O, pelo cérebro é equivalente a 20% do total consumido pelo corpo. Esses mecanismos, descritos como controladores da utilização de substratos energéticos pelo cérebro, sofrem a influência da idade apenas no período perinatal, com a oxidação do lactato na fase pré-latente e dos corpos cetônicos, no início da amamentação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the location and distribution of O-2 chemoreceptors involved in cardio-respiratory responses to hypoxia in the neotropical teleost, the pacu (Piaractus mesopotamicus). Intact fish and fish experiencing progressive gill denervation by selective transection of cranial nerves IX and X were exposed to gradual hypoxia and submitted to intrabuccal and intravenous injections of NaCN while their heart rate, ventilation rate and ventilation amplitude were measured. The chemoreceptors producing reflex bradycardia were confined to, but distributed along all gill arches, and were sensitive to O-2 levels in the water and the blood. Ventilatory responses to all stimuli, though modified, continued following gill denervation, however, indicating the presence of internally and externally oriented receptors along all gill arches and either in the pseudobranch or at extra-branchial sites. Chemoreceptors located on the first pair of gill arches and innervated by the glossopharyngeal nerve appeared to attenuate the cardiac and respiratory responses to hypoxia. The data indicate that the location and distribution of cardio-respiratory O-2 receptors are not identical to those in tambaqui (Colossoma macropomum) despite their similar habitats and close phylogenetic lineage, although the differences between the two species could reduce to nothing more than the presence or absence of the pseudobranch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen uptake and the influence of declining oxygen pressures (Po2's) were examined in a Brazilian spirostreptid millipede, Pseudonannolene tricolor. The data were obtained in a Warburg respirometer at 25-degrees-C from both male and female animals, sexually inactive, in the intermolt stage, and fasting for 24 h. In a sudden exposure to a decreased Po2 the millipedes regulated respiration down to at least 71 mmHg O2. From a Po2 of 35 mmHg O2 downward the animals started to show oxyconformity. When the millipedes were exposed to a stepwise declining Po2 the results indicated only conformation. After exposure to hypoxia, P. tricolor showed a pattern of underrepayment on return to normoxia, but larger millipedes accumulated more O2 debt than smaller ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of an accessory air breathing mechanism as verified by several authors, is widespread among Loricariidae, where modified parts of the digestive tract act primarily as oxygen-exchange organs. An anatomical and histological analysis was carried out on the stomach and intestine of the armoured catfish Liposarcus anisitsi. The data support the assumption that the modified stomach is responsible for holding air and allows blood oxygenation under hypoxia. Experiments demonstrating survival of air breathing Liposarcus in severely hypoxic water support the hypothesis and are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary role of the respiratory system is to ensure adequate tissue oxygenation, eliminate carbon dioxide and help to regulate acid-base status. To maintain this homeostasis, amphibians possess an array of receptors located at peripheral and central chemoreceptive sites that sense respiration-related variables in both internal and external environments. As in mammals, input from these receptors is integrated at central rhythmogenic and pattern-forming elements in the medulla in a manner that meets the demands determined by the environment within the constraints of the behavior and breathing pattern of the animal. Also as in mammals, while outputs from areas in the midbrain may modulate respiration directly, they do not play a significant role in the production of the normal respiratory rhythm. However, despite these similarities, the breathing patterns of the two classes are different: mammals maintain homeostasis of arterial blood gases through rhythmic and continuous breathing, whereas amphibians display an intermittent pattern of aerial respiration. While the latter is also often rhythmic, it allows a degree of fluctuation in key respiratory variables that has led some to suggest that control is not as tight in these animals. In this review we will focus specifically on recent advances in studies of the control of ventilation in anuran amphibians. This is the group of amphibians that has attracted the most recent attention from respiratory physiologists. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few environmental factors have a larger influence on animal energetics than temperature, a fact that makes thermoregulation a very important process for survival. In general, endothermic species, i.e., mammals and birds, maintain a constant body temperature (Tb) in fluctuating environmental temperatures using autonomic and behavioural mechanisms. Most of the knowledge on thermoregulatory physiology has emerged from studies using mammalian species, particularly rats. However, studies with all vertebrate groups are essential for a more complete understanding of the mechanisms involved in the regulation of Tb. Ectothermic vertebrates-fish, amphibians and reptiles-thermoregulate essentially by behavioural mechanisms. With few exceptions, both endotherms and ectotherms develop fever (a regulated increase in Tb) in response to exogenous pyrogens, and regulated hypothermia (anapyrexia) in response to hypoxia. This review focuses on the mechanisms, particularly neuromediators and regions in the central nervous system, involved in thermoregulation in vertebrates, in conditions of euthermia, fever and anapyrexia. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic differences derived from social stress usually show data with high variance that may hinder the finding of important differences. Since such high variance may be caused by agonistic variability occurring during social interactions, this work tested whether metabolism is associated with agonistic profile in the cichlid fish Nile tilapia, Oreochromis niloticus (L.). Metabolism was inferred from oxygen consumption, resistance to progressive hypoxia and ventilatory rate. Fifteen pairs of alevins were used for each metabolic and behavioral series. An ethogram based on 8 types of agonistic interactions was employed. Agonistic profiles were determined and associated with the physiological parameters later on. The test of canonical correlation showed significant association between some agonistic profiles and metabolism. Ventral nipping and lateral fight appeared as the two most important in promoting association with metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. To determine whether diltiazem protects the hypoxic myocardium by reducing contractile work, we have compared the effects of diltiazem and quiescence on left ventricular (LV) papillary muscle subjected to hypoxia. Papillary muscles were obtained from male Charles River CD rats weighing 150-250 g.2. Four groups of muscles were studied: control (N = 6), non-stimulation (N = 10), diltiazem 10(-4) M (N = 6) and diltiazem 10(-4) M plus non-stimulation (N = 10).3. Isolated mt LV papillary muscles were studied in Krebs-Henseleit solution with a calcium concentration of 2.52 mM at 28-degrees-C while contracting isometrically at a stimulation rate of 0.2 Hz. Resting tension and active isometric tension were measured.4. Both diltiazem and quiescence significantly attenuated contracture tension during hypoxia (0.91 +/- 0.10 vs 2.26 +/- 0.49 g/mm2 for diltiazem vs control, and 0.55 +/- 0.18 vs 2.26 +/- 0.49 g/mm2 for quiescence vs control). Recovery of active tension was improved in the diltiazem groups during reoxygenation (4.16 +/- 0.42 vs 3.75 +/- 0.51, 3.53 +/- 0.15 vs 2.90 +/- 0.13, 5.84 +/- 0.33 vs 6.48 +/- 0.29 and 5.98 +/- 0.90 vs 7.67 +/- 0.68 g/mm2 for diltiazem, diltiazem non-stimulation, non-stimulation and control groups).5. The results suggest that the protective effect of diltiazem during hypoxia was due to the reduction in energy demand of the myocardium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low O-2 levels in the lungs of birds and mammals cause constriction of the pulmonary vasculature that elevates resistance to pulmonary blood flow and increases pulmonary blood pressure. This hypoxic pulmonary vasoconstriction (HPV) diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts and is considered important for the local matching of ventilation to blood perfusion. In the present study, the effects of acute hypoxia on pulmonary and systemic blood flows and pressures were measured in four species of anesthetized reptiles with diverse lung structures and heart morphologies: varanid lizards (Varanus exanthematicus), caimans (Caiman latirostris), rattlesnakes (Crotalus durissus), and tegu lizards (Tupinambis merianae). As previously shown in turtles, hypoxia causes a reversible constriction of the pulmonary vasculature in varanids and caimans, decreasing pulmonary vascular conductance by 37 and 31%, respectively. These three species possess complex multicameral lungs, and it is likely that HPV would aid to secure ventilation-perfusion homogeneity. There was no HPV in rattlesnakes, which have structurally simple lungs where local ventilation-perfusion inhomogeneities are less likely to occur. However, tegu lizards, which also have simple unicameral lungs, did exhibit HPV, decreasing pulmonary vascular conductance by 32%, albeit at a lower threshold than varanids and caimans (6.2 kPa oxygen in inspired air vs. 8.2 and 13.9 kPa, respectively). Although these observations suggest that HPV is more pronounced in species with complex lungs and functionally divided hearts, it is also clear that other components are involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactate is a compound produced by the anaerobic metabolism of glucose, and hyperlactataemia occurs when the rate of production of lactate exceeds the rate of elimination. This occurs in situations of hypoxia and tissue hypoperfusion. Lactate has been considered a useful prognostic indicator in critically ill patients. Pyometra is a disease of adult female dogs characterized by inflammation of the uterus with an accumulation of exudate, which occurs during the luteal phase. It is one of the most common diseases that occur in the genital tract of female dogs. A total of 31 dogs were diagnosed with pyometra. The diagnosis was confirmed at ultrasonography. of the 31 dogs, 25 females had open cervix pyometra and six had closed cervix pyometra. Plasma lactate concentrations were determined by an enzymatic colorimetric method. The average concentration (+/- SD) of plasma lactate in all 31 bitches with pyometra was 3.55 +/- 0.46 mm. Healthy dogs had plasma lactate concentrations between 0.3 and 2.5 mm (mean +/- SD). Concentrations ranged from 0.8 to 2.9 mm when plasma lactate was measured with a portable device and 0.42.6 mm with the blood gas analyser. Even though plasma lactate values vary between several studies and equipment used to measure concentrations, our results for dogs with pyometra are higher indicating hyperlactataemia (Thorneloe et al. , Can Vet J 48, 283288). Plasma lactate in dogs with closed cervix pyometra was mean +/- SD and in dogs with open cervix pyometra, it was mean +/- SD. The plasma lactate concentration in dogs with pyometra was higher than in healthy bitches, and there was no influence of patency of the cervix on the concentration of plasma lactate concentrations. Plasma lactate concentrations were similar for animals with open and closed pyometra (3.54 +/- 0.52 to 3.64 +/- 1.03 mm).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To examine the basis for local wall motion abnormalities commonly seen in patients with ischemic heart disease, computer-controlled isolated muscle studies were carried out. Methods: Force patterns of physiologically sequenced contractions (PSCs) from rat left ventricular muscle preparations under well-oxygenated conditions and during periods of hypoxia and reoxygenation were recorded and stored in a computer. Force patterns of hypoxic-reoxygenating and oxygenated myocardium were applied to oxygenated and hypoxic-reoxygenating myocardium, respectively. Results: Observed patterns of shortening and lengthening closely resemble those obtained from ischemic and non-ischemic myocardial segments using ultrasonic crystals in intact dog hearts during coronary occlusion and reperfusion, and are similar to findings reported in angiographic studies of humans with coronary artery disease. Conclusion: The current study, demonstrating motions of oxygenated isolated muscle preparations which are similar to those in perfused segments of intact hearts with regional ischemia, supports the concept that the multiple motions of both ischemic and non-ischemic segments seen in regional myocardial disease can be explained by interactions of strongly and weakly contracting muscle during the physiologic cardiac cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neonatal high risk children present high incidence for communication disorders and delay development of language. The present study aimed to evaluate the incidence of communication disorders and long term follow up of neonatal high risk children. Twenty-one children were followed up to age of four years old and were evaluated for the development of linguistics aspects. The main high risk neonatal factors were: prematurity, mechanical ventilation, long time in the incubator and severe hypoxia. In 47,62% of the cases, the following communication disorder were found: articulation disorders (9,52%), simple (9,52%) and small and (14,29%) with delay development of language. The incidence of these disorders was greater among male children (57,14%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objectives - The decision to perform anesthetic and surgical procedures in children with upper airway infeccious disease, due to the possibility of intraoperative respiratory morbidity, has been a dilemma for anesthesiologists. This study aimed at evaluating the incidence of respiratory complications in children submitted to general anesthesia and correlate them to preoperative signs and symptoms related to the respiratory tract, thus determining anesthetic-surgical morbidity. Methods - Participated in this study 284 children, physical status ASA I or II, submitted to general anesthesia. During preoperative evaluation, respiratory signs and symptoms were recorded, as well as types of diseases and corresponding diagnoses. Respiratory complications during anesthesia and in the recovery room were also recorded and analyzed taking into account age, elective or urgent procedure, airway management and presence or absence of signs, symptoms or history of respiratory tract diseases. Results - We found 38% of patients with preoperative respiratory disease history. The most common respiratory disease was upper airway infection. Intraoperative respiratory complications were present in 26.4% of patients. Children under 12 months of age and those with preoperative respiratory disease history had more intraoperative and PACU complications. Conclusions - We concluded that children, specially younger, with respiratory system involvement, like upper airway infections, are at a higher risk of intra and postoperative respiratory complications, thus with an increased incidence of anesthetic-surgical morbidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To review the literature on inhaled nitric oxide and to describe its main clinical applications in pediatrics. Sources of data: A 10 year literature review with selection of the most important publications on inhaled nitric oxide, using the Medline and Cochrane Systematic Review databases. Summary of the findings: This review was organized as follows: introduction; metabolism and biological effects; clinical applications; dosage, gas administration and weaning; precautions and side-effects. Inhaled nitric oxide use was described in persistent pulmonary hypertension and hypoxia of the newborn, acute respiratory distress syndrome, primary pulmonary hypertension, heart surgery, chronic obstructive pulmonary disease, sickle cell anemia, and bronchospastic disease. Conclusions: Inhaled nitric oxide is a therapeutic approach with wide clinical applications in pediatrics. Its use is safe when administered in pediatric intensive care units under strict monitoring. As a pulmonary vasodilator, nitric oxide has beneficial effects on gas exchange and ventilation. Controlled trials, focusing on early gas administration should be performed under many clinical conditions, especially acute respiratory distress syndrome.