115 resultados para HYDROGEN FUEL CELLS
Resumo:
Fuel cells powered directly with ethanol (Direct Ethanol Fuel Cell-DEFC) are very attractive for the possibility of using a renewable fuel in the generation of clean energy. However, it is still necessary to deepen the understanding of catalytic processes and their dependence on the catalytic properties. This work proposes to study the catalytic activity of ethanol oxidation in an alkaline medium of Pd nanoparticles supported in carbon oxide hybrids using various transition metal oxides (MoO3, TiO2, WO3 and ZrO2). The materials prepared were characterized by techniques such as X-ray diffraction, transmission electron microscopy (TEM) and X-ray dispersive spectroscopy (EDX) to verify the structure, the distribution of particles in the supports and the presence of Pd on particles oxide. Experiments of X-rays absorption spectroscopy were carried out using soft X-rays (SXS) to evaluate the changes in the electronic properties of the Pd particles caused by interactions with different oxides. Measurements of cyclic voltammetry and potential sweeps of adsorbed CO oxidation allowed evaluating general aspects of the catalysts' electrochemical behavior and determining the electrochemically active area thereof. The catalytic performances of ethanol oxidation in alkaline medium were evaluated by electrochemical techniques (potential scan and chronoamperometry), and showed an improvement in activity with the addition of oxides in material containing only carbon, which was most pronounced for the catalyst containing TiO2. This improvement was predominantly associated with the electronic effects caused by the interaction of Pd on the support, causing a vacancy in the 4d band of Pd which, in turn, produces variations in adsorption energies of the species...
Resumo:
Objective. This study evaluated transenamel and transdentinal cytotoxic effects of a bleaching gel on the MDPC-23 cell line.Study design. Discs obtained from bovine incisors were placed in a metallic device to simulate an in vivo pulp chamber. Groups were formed according to the enamel surface treatment: G1: 35% H(2)O(2) bleaching gel; G2: 35% H2O2 bleaching gel + halogen light; G3: halogen light; and G4: control. Cell metabolism was evaluated by the methyltetrazolium assay and cell morphology by scanning electron microscopy.Results. Cell metabolism decreased by 31.7%, 41.6%, and 11.5% in G1, G2, and G3, respectively. Cytotoxic effects observed in G2 were significantly more severe compared with G3 and G4. In G1 and G2, a smaller number of viable cells with major morphologic alterations remained adhered to dentin.Conclusion. The bleaching gel associated with light presented transenamel and transdentinal cytotoxic effects characterised by direct damage to odontoblasts and decrease of their metabolic activity. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 458-464)
Resumo:
Hydrogen Sulfide (H(2)S) a volatile Sulfur compound, is implicated as a cause of inflammation. especially when it is produced by bacteria colonizing gastrointestinal organs However, It IS Unclear if H(2)S produced by periodontal pathogens affects the inflammatory responses mediated by oral/gingival epithelial cells Therefore. the aims of this Study were (1) to compare the in vitro production of H(2)S among. 14 strains of Oral bacteria and (2) to evaluate the effects of H(2)S on inflammatory response induced in host oral/gingival epithelial cells Porphyromonas gingivalis (Pg) produced the most H(2)S in Culture, Which, in turn resulted in the promotion of proinflammatory cytokine IL-8 from both gingival and Oral epithelial cells The up-regulation of IL-8 expression was reproduced by the exogenously applied H(2)S Furthermore. the Mutant Strains of Pg that do not produce major Soluble Virulent factors. ie gingival, still showed the Production of H(2)S. as well as the promotion of epithelial IL-8 production. which was abrogated by H(2)S scavenging reagents These results demonstrated that Pg produces a concentration of H(2)S capable of Up-regulating-IL-8 expression induced in gingival and oral epithelial cells, revealing a possible mechanism that may promote the inflammation in periodontal disease (C) 2009 Elsevier B.V. All rights reserved
Release of intermediate reactive hydrogen peroxide by macrophage cells activated by natural products
Resumo:
By determining the hydrogen peroxide (H2O2) released in cultures of peritoneal macrophage cells from Swiss mice, we evaluated the action of 27 vegetable compounds (pristimerin, tingenone, jatrophone, palustric acid, lupeol, cladrastin, ocoteine, boldine, tomatine, yohimbine, reserpine, escopoletin, esculine, plumericin, diosgenin, deoxyschizandrin, p-arbutin, mangiferin, and others) using a 2 mg/ml solution of each compound (100 mug/well). Macrophages are cells responsible for the development of the immunological response reaction, liberating more than one hundred compounds into the extracellular environment. Among these are the various cytokines and the intermediate compounds of nitrogen (NO) and oxygen (H2O2). This coordinated sequence of biochemical reactions is known as the oxidative burst. When we compared the results with those obtained with zymosan (an important stimulator of H2O2) we observed that the compounds showing the highest activity were substances 2 (tingenone), 16 (reserpine) and 20. Other substances such as compounds 1, 4, 5, 6, 8, 12, 13, 14, 15, 17, 19, 23, 24, 26, and 27 also showed a certain activity, but with less intensity than the aforementioned ones. Compounds 3, 7, 9, 10, 11, 18, 21, 22 and 25 presented no activity. These results suggest that natural products (mainly tingenone and reserpine and others) with different chemical structures are strong immunological modulators. However, further tests are needed to determine the 'oxidative burst' in future studies.
Resumo:
The aim of this study was to evaluate the trans-enamel and trans-dentinal effects of a 35% hydrogen peroxide (H2O2) bleaching gel on odontoblast-like cells. Enamel/dentin discs obtained from bovine incisors were mounted in artificial pulp chambers (APCs). Three groups were formed: G1- 35% H2O2; G2- 35% H2O2 + halogen light application; G3- control. The treatments were repeated 5 times and the APCs were incubated for 12 h. Then, the extract was collected and applied for 24 h on the cells. Cell metabolism, total protein dosage and cell morphology were evaluated. Cell metabolism decreased by 62.09% and 61.83% in G1 and G2, respectively. The depression of cell metabolism was statistically significant when G1 and G2 were compared to G3. Total protein dosage decreased by 93.13% and 91.80% in G1 and G2, respectively. The cells in G1 and G2 exhibited significant morphological alterations after contact with the extracts. Regardless of halogen light application, the extracts caused significantly more intense cytopathic effects compared to the control group. After 5 consecutive applications of a 35% H2O2 bleaching agent, either catalyzed or not by halogen light, products of gel degradation were capable to diffuse through enamel and dentin causing toxic effects to the cells.
Resumo:
Aim To assess the initial cytotoxicity and the late phenotype marker expression of odontoblast-like cells (MDPC-23) subjected to less aggressive in-office bleaching therapies. Methodology A 17.5% hydrogen peroxide (H2O2) gel was applied for 45, 15 or 5 min to enamel/dentine discs adapted to trans-wells positioned over cultured MDPC-23 cells. No treatment was performed on the negative control. Immediately after bleaching, the cell viability, gene expression of inflammatory mediators and quantification of H2O2 diffusion were evaluated. The ALP activity, DSPP and DMP-1 gene expression and mineralized nodule deposition (MND) were assessed at 7, 14 or 21 days post-bleaching and analysed statistically with Mann–Whitney U-tests (α = 5%). Results H2O2 diffusion, proportional to treatment time, was observed in all bleached groups. Reductions of approximately 31%, 21% and 13% in cell viability were observed for the 45-, 15- and 5-min groups, respectively. This reduction was significant (P < 0.05) for the 45- and 15-min groups, which also presented significant (P < 0.05) over-expression of inflammatory mediators. The 45-min group was associated with significant (P < 0.05) reductions in DMP-1/DSPP expression at all periods, relative to control. The ALP activity and MND were reduced only in initial periods. The 15-min group had less intense reduction of all markers, with no difference to control at 21 days. Conclusions The 17.5% H2O2 applied to tooth specimens for 5 min caused no alteration in the odontoblast-like cells. When this gel was applied for 45 or 15 min, a slight cytotoxicity, associated with alterations in phenotypic markers, was observed. However, cells were able to recover their functions up to 21 days post-bleaching.
Resumo:
To evaluate the effect of the oxidative stress on human dental pulp cells (HDPCs) promoted by toxic concentrations of hydrogen peroxide (H2O2) on its odontoblastic differentiation capability through time. Methods HDPCs were exposed to two different concentrations of H2O2 (0.1 and 0.3 μg/ml) for 30 min. Thereafter, cell viability (MTT assay) and oxidative stress generation (H2DCFDA fluorescence assay) were immediately evaluated. Data were compared with those for alkaline phosphatase (ALP) activity (thymolphthalein assay) and mineralized nodule deposition (alizarin red) by HDPCs cultured for 7 days in osteogenic medium. Results A significant reduction in cell viability and oxidative stress generation occurred in the H2O2-treated cells when compared with negative controls (no treatment), in a concentration-dependent fashion. Seven days after H2O2 treatment, the cells showed significant reduction in ALP activity compared with negative control and no mineralized nodule deposition. Conclusion Both concentrations of H2O2 were toxic to the cells, causing intense cellular oxidative stress, which interfered with the odontogenic differentiation capability of the HDPCs. Clinical significance The intense oxidative stress on HDPCs mediated by H2O2 at toxic concentrations promotes intense reduction on odontoblastic differentiation capability in a 7-day evaluation period, which may alter the initial pulp healing capability in the in vivo situation.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This project verified the potential for the production of hydrogen via water electrolysis by using the exceeding electrical energy resultant from alcohol and sugar plants that use sugar cane bagasse as fuel. The studies were carried out in cogeneration plants authorized by the Electrical Energy National Agency (ANEEL). The processing history of sugar cane considered was based on the 2006/2007 harvests. The total bagasse produced, electrical energy generated and exceeding electrical energy in a year were calculated. It was obtained an average energy consumption value of 5.2 kWh Nm(-3) and the hydrogen production costs regarding the amount of sugar cane processed that ranged from US$ 0.50 to US$ 0.75 Nm(-3). The results pointed that the costs for the production of hydrogen via the bagasse exceeding energy are close to the production costs that use other sources of energy. As the energy generated from the bagasse is a renewable one, this alternative for the production of hydrogen is economical and environmentally viable. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chlorhexidine, even at low concentrations, is toxic for a variety of eukaryotic cells; however, its effects on host immune cells are not well known. We evaluated in vitro chlorhexidine-induced cytotoxicity and its effects on reactive oxygen/nitrogen intermediate induction by murine peritoneal macrophages. Thioglycollate-induced cells were obtained from Swiss mice by peritoneal lavage with 5 ml of 10 mM phosphate-buffered saline, washed twice and resuspended (10(6) cells/ml) in appropriate medium for each test. Cell preparations contained more than 95% macrophages. The cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay and the presence of hydrogen peroxide (H2O2) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively. The midpoint cytotoxicity values for 1- and 24-h exposures were 61.12 ± 2.46 and 21.22 ± 2.44 µg/ml, respectively. Chlorhexidine did not induce synthesis or liberation of reactive oxygen/nitrogen intermediates. When macrophages were treated with various sub-toxic doses for 1 h (1, 5, 10, and 20 µg/ml) and 24 h (0.5, 1, and 5 µg/ml) and stimulated with 200 nM phorbol myristate acetate (PMA) solution, the H2O2 production was not altered; however, the NO production induced by 10 µg/ml lipopolysaccharide (LPS) solution varied from 14.47 ± 1.46 to 22.35 ± 1.94 µmol/l and 13.50 ± 1.42 to 20.44 ± 1.40 µmol/l (N = 5). The results showed that chlorhexidine has no immunostimulating activity and sub-toxic concentrations did not affect the response of macrophages to the soluble stimulus PMA but can interfere with the receptor-dependent stimulus LPS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.
Resumo:
Fuel cell as molten carbonate fuel cell (MCFC) operates at high temperatures. Thus, cogeneration processes may be performed, generating heat for its own process or for other purposes of steam generation in the industry. The use of ethanol is one of the best options because this is a renewable and less environmentally offensive fuel, and is cheaper than oil-derived hydrocarbons, as in the case of Brazil. In that country, because of technical, environmental, and economic advantages, the use of ethanol by steam reforming process has been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where the highest volumes of products are produced, making possible a higher production of energy, that is, a more efficient use of resources. To attain this objective, mass and energy balances were performed. Equilibrium constants and advance degrees were calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree (according to Castellan 1986, Fundamentos da Fisica/Quimica, Editora LTC, Rio de Janeiro, p. 529, in Portuguese) is a coefficient that indicates the evolution of a reaction, achieving a maximum value when all the reactants' content is used of reforming increases when the operation temperature also increases and when the operation pressure decreases. However, at atmospheric pressure (1 atm), the advance degree tends to stabilize in temperatures above 700 degrees C; that is, the volume of supplemental production of reforming products is very small with respect to high use of energy resources necessary. The use of unused ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at the same tension, is higher at 700 degrees C than other studied temperatures such as 600 and 650 degrees C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8% and 58.9% in temperatures between 600 and 700 degrees C. The higher calculated current density is 280 mA/cm(2). The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced powers at 190 mA/cm(2) are 99.8, 109.8, and 113.7 mW/cm(2) for 873, 923, and 973 K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describe a process of internal steam reforming of ethanol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)