72 resultados para HTML-element
Resumo:
The aim of this work is to present a formulation of the boundary element method to analyse elastic and isotropic plates with curved boundaries. In this study the plate boundary is approximated, along each element, by a second degree polynomial relation or by a circular arch, in order to better represent the real boundary. The numerical integration is performed by the self-adaptive coordinate transformation proposed by Telles. The effective shear forces are approximated by concentrated reactions applied at the boundary element nodes, according to the alternative formulation introduced by Paiva. Some examples are presented to demonstrate the better accuracy obtained with the proposed elements.
Resumo:
A numerical scheme based on the Finite Element Method (FEM) is presented to calculate the full solution of a three-dimensional steady magnetohydrodynamic (MHD) flow with moderately high Hartmann numbers and interaction parameters. An incompressible, viscous and electrically conducting liquid-metal is considered. Assuming a low magnetic Reynolds number, the solution method solves the coupled Navier-Stokes and Maxwell's equations through the use of a penalty function method. Results are presented for Hartmann numbers in the range 10(2)-10(3).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mature leaf fragments from eight species of Xyris from the Serra do Cipo, State of Minas Gerais, Brazil, were prepared by the usual methods for electron microscopy. Ultrastructural analysis of phloem shows the occurrence of nacreous walls with a polylamellate structure in the sieve-elements of X. tortilis and plastids similar to P-plastids, form PIIcf in the sieve-elements of all investigated species.
Resumo:
Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrp1p is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using-functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrp1p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrp1p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.
Resumo:
This work presents the application of a scalar finite element formulation for Ex (TE-like) modes in anisotropic planar and channel waveguides with diagonal permittivity tensor, diffused in both transversal directions. This extended formulation considers explicitly both the variations of the refractive index and their spatial derivates inside of each finite element. Dispersion curves for Ex modes in planar and channel waveguides are shown, and the results compared with solutions obtained by other formulations.
Resumo:
This paper introduces Java applet programs for a WWW (world wide web)-HTML (hypertext markup language)-based multimedia course in Power Electronics. The applet programs were developed with the purpose of providing an interactive visual simulation and analysis of idealized uncontrolled single-phase, and three-phase rectifiers. In addition, this paper discusses the development and utilization of JAVA applet programs to solve some design-oriented equations for rectifier applications. The major goal of these proposed JAVA applets was to provide more facilities for the students increase their pace in Power Electronics course, emphasizing waveforms analysis, and providing conditions for an on-line comparative analysis among different hands-on laboratory experiences, via a normal Internet TCP/IP connection. Therefore, using the proposed JAVA applets, which were embedded in a WWW-HTML-based course in Power Electronics, was observed an important improvement of the apprenticeship for the content of this course. Therefore, the course structure becomes fluid, allowing a true on-line course over the WWW, motivating students to learn its content, and apply it in some applications-oriented projects, and their home-works.
Resumo:
This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.
Resumo:
In this work, the analysis of electroosmotic pumping mechanisms in microchannels is performed through the solution of Poisson-Boltzmann and Navier Stokes equations by the Finite Element Method. This approach is combined with a Newton-Raphson iterative scheme, allowing a full treatment of the non-linear Poisson-Boltzmann source term which is normally approximated by linearizations in other methods.