92 resultados para HINDLIMB MUSCLES
Resumo:
Aging is associated with decline in muscle mass and strength and reduced bone density. Age-related bone loss is a primary factor in osteoporosis and all individuals are potential candidates for osteoporosis because bone loss with aging occurs in men and women, but less studied in men. To examine the appropriateness of hindlimb elevation, by tail suspension as a model for diminished mechanical loading, and to determine the influence of age on bone responsiveness to skeletal unloading, we use dual X ray absorptiometry (DXA) and digital radiographic images to analyze the response of the femur from mature rats to biomechanical loads. Femurs from male Wistar rats (9-mo-old) were scanned using DXA and DIGORA and measures obtained in ephipyseal and diaphyseal regions of interest. The mechanical testing was divided into compression load to fracture the head and a three-point bending load to fracture the femur middiaphysis. In femoral epiphysis from hindlimb unload (HU), animals presented significant differences between mineral bone content and density assessed by DXA. Detailed regions of femoral epiphysis (head, throcanteric fossa, throcanter and metaphysis) presented significant lower values from radiographic density. Only compressive load necessary to fracture the femoral head neck was also significantly diminished in HU animals. Disuse induced, as in elderly patients, deterioration of the trabecular bone architecture with critical effect on bone fragility. Rats with 21 days of hindlimb unloading can simulate disuse, suggesting that certain sub-regions of their aging bones are more susceptible to fracture, while other, i.e. diaphyses, are not.
Resumo:
The aim of this study was to assess the electrical activity of the masseter and anterior temporal muscles in patients with severe bone resorption, with complete dentures worn for over ten years, and five months after having new dentures put in place. The RDC questionnaire was applied to twelve asymptomatic patients, before and five months after new dentures were put in place. The electrical activity recordings were made in the mandibular position at rest, and during maximum tooth clenching. The electrical activity of the masseter and anterior temporal muscles in the position at rest presented no statistically significant difference after five months of wearing the new complete dentures. Electrical activity during tooth clenching exhibited a statistically significant reduction only in the right temporal muscle. A period longer than five months of wearing the new complete dentures is required for adaptation and the acquisition of functional capacity.
Resumo:
It was purposed the use of electromyography (EMG) to evaluate the activation of the agonists and antagonists muscles of spastic patients, to test the viability in the development of an instrument that given quantitative data of the patient spasticity. 30 hemiplegic and 15 normal volunteers had been submitted to the EMG of flexor and extensor carpi ulnaris muscles during the flexion and extension movements of the wrist. The individuals with less severe spasticity (mAS (modified Ashworth Scale) ringing 0 to 3 degree), had presented deficit in the activation of the flexor muscles in plegic side in relation to the non plegic side and that the individuals seriously compromised by the spasticity (mAS = 4 degree) present deficit of reciprocal inhibition. One evidenced is that the non plegic member does not present a similar neuro-motor comportment when compared to the normal member. The surface electromyography is a practical clinical instrument to evaluate the patient with spasticity and the hemiplegic patient needs to be evaluated on both sides (deficient and no deficient) because the no compromised side do not show a normality standard.
Resumo:
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Resumo:
This study aimed to compare the torque, torque ratio (Hamstrings:Quadriceps - H:Q), electromyographic (EMG) activity and EMG ratio (knee flexors:knee extensors EMG) in soccer players (SG, N=10) and active subjects (AG, N=10). Subjects performed three maximal voluntary isometric knee extensions and flexions at 45° and 90° to determine the peak torque and EMG activity. Torque and EMG activity of the knee flexor (biceps femoris [BF] and semitendinosus [ST]) were divided by the torque and EMG activity of the knee extensor (vastuls lateralis [VL] and rectus femoris [RF]) to calculate torque ratios (H:Q) and EMG ratios (BF:VL, BF:RF, ST:VL, ST:RF). The flexion torque was significantly higher for SG (p<0.05) in 45° and 90°. EMG activity for SG was significantly higher in agonist contractions for VL, RF and ST, and significantly lower in antagonist contractions for RF and ST when compared to AG Torque and EMG ratios were similar between groups and there were good correlations between torque ratio and BF:VL ratio (r=0.71, p=0.02) and BF:RF ratio (r=0.81, p=0.004) at 45. The EMG results could overestimate the joint balance calculated using torque ratios. Differences in recruitment pattern between soccer players and non-athletes can be related to the training routines and the EMG ratios presents applicable in trained populations.
Resumo:
Evaluating the ability to rectify and maintain lumbar adjustment can contribute toward the understanding of the behavior of abdominal muscles and their participation in the stability of pelvic muscles in dancers during the posterior pelvic tilt and double straight leg lowering tests. Nine healthy volunteers (male and female ballet dancers; age mean: 25.9 ±7.37 years) underwent maximal isometric voluntary contraction (MIVC), isometric voluntary contraction at 50% of MIVC, posterior pelvic tilt (PPT) and double straight leg lowering (DSLL) tests. The tests were carried out in a single day, with 3 repetitions each. During the tests, electromygraphic signals of the rectus abdominis, obliquus internus and obliquus externus were recorded. The signal acquisition system was made up of bipolar surface electrodes, electrogoniometer and an electromechanic device (pressure sensor), which were connected to a signal conditioner module. Root mean square values of each muscle during the DSLL and PPT were converted into percentage of activation of 50% MIVC. Lower back pressure was submitted to the same process. ANOVA with repeated measures was performed, with the level of significance set at p < 0.05. The results revealed that all dancers were able to maintain posterior pelvic tilt and there was trend toward greater activation of the bilateral obliquus internus muscle. In an attempt to keep the pelvic region stabilized during DSLL, there was a greater contribution from the obliquus externus muscle in relation to other abdominal muscles.
Resumo:
Introduction: Bone strength is influenced by a number of different determinants, such as mass, size, geometry and also by the intrinsic material properties of the tissue. Aims: The structure and mechanical properties of the femur were analyzed in aged (14 mo-old) animals submitted to hindlimb unloading (HU) for 21 days. Methods: Twenty Wistar rats were randomly divided into Control and HU groups and the femur was submitted to dual X ray absorptiometry (DXA), DIGORA radiographic density, mechanical compression testing and Knoop microhardness analyse in cortical and cancellous bone. Results: Femurs from HU group presented significantly lower failure load, decreased bone mineral density (BMD)/bone mineral content (BMC) in whole bone; proximal/distal epiphysis and middiaphyseal cortical bone measured by DXA were similar in the two groups; radiographic density from areas in proximal epiphysis was significantly lower in HU group, and microhardness measured at periosteal and endosteal levels were also signifcantly diminished in HU compared with Control group. Conclusion: Disuse induced damage in the trabecular femoral bone architecture with decisive effect on the head and trochanteric fossa, which became weaker. Bone diaphyseal cortical hardness also suffered effect of unloading, probably related to osteocyte/osteoblast activity.
Resumo:
It was analized the deltoid muscle anterior portion and the pectoralis major clavicular portion in 24 male volunteers using a two-channel electromyograph TECA TE 4, and Hewllet Packard surface electrodes, in 4 modalities of military press exercises with open grip. The results showed high inactivity for PMC in almost all the modalities while DA developed very high levels of action potentials in all the modalities assessed.
Resumo:
Purpose: The aim of this study was to evaluate the effect of occlusal splint treatment on the temperature of masseter (inferior, intermediate and superior), anterior temporal, digastric and trapezius muscles in patients with temporomandibular disorder (TMD). Materials and methods: Thirty patients (6 male and 24 female) aged from 16 to 57 years (mean 37.8. ± 11.4 years) were selected. The patients were diagnosed with muscular TMD by clinical examination (application of Research Diagnostic Criteria questionnaire and physical examination). Occlusal splints in acrylic resin were inserted in all patients with a weekly follow-up. The superficial thermography (°C) on the both sides of the muscles was performed using a digital thermometer in a controlled temperature room. This procedure was performed before occlusal splint insertion (patient with pain) and after the completion of the treatment (patient without pain). The data were analyzed by 2-way repeated-measures ANOVA and means were compared by Tukey HSD test (P< .05). Results: After occlusal splint treatment a significant increase in temperature was observed in each muscle, both in the right and left sides. When the muscles were compared in the same period (before or after therapy) there was no significant difference among them. Conclusion: It can be concluded that the use of occlusal splint promoted a significant increase on the muscles temperature. There was symmetry in the temperature of muscles on the right and left sides both before and after the treatment. © 2010 Japan Prosthodontic Society.
Resumo:
With the objective to know the electromyographic activity normal parameters of the deltoid (anterior portion) and pectoralis major (clavicular portion) muscles in the different modalities of military press exercises with middle grip, we analyzed 24 male volunteers using a two-channel electromyograph TECA TE 4, and Hewllet Packard surface electrodes. It was observed high inactivity levels for PMC in almost all the modalities and the concentration in the active cases, mainly, in the weak potential, while DA presented very high levels of much strong action potentials in all the modalities assessed.
Resumo:
This study aimed to analyze the electromyographic (EMG) activity of iliocostalis lumborum (IL), internal oblique (IO) and multifidus (MU) and the antagonist cocontraction (IO/MU and IO/IL) during the performance of Centering Principle of Pilates Method. Participating in this study were eighteen young and physically fit volunteers, without experience in Pilates Method, divided in two groups: low back pain group (LBPG, n = 8) and control group (CG, n = 10). Two isometric contractions of IO muscles (Centering Principle) were performed in upright sitting posture. EMG signal amplitude was calculated by Root Mean Square (RMS), which was normalized by RMS maximum value. The common area method to calculate the antagonist cocontraction index was used. MU and IO activation and IO/MU cocontraction (. p < 0.05) were higher in CG. The CG therefore showed a higher stabilizer muscles recruitment than LBPG during the performance of Centering Principle of Pilates Method. © 2012 Elsevier Ltd.
Resumo:
The purpose of this study was to compare the antagonist coactivation of the local and global trunk muscles during mat-based exercises of Skilled Modern Pilates. Twelve women performed five exercises and concurrently, surface EMG from internal oblique (OI), multifidus (MU), rectus abdominis (RA) and iliocostalis lumborum (IL) muscles was recorded bilaterally. The percentage of antagonist coactivation between local (OI/MU) and global muscles (RA/IL) was calculated. Individuals new to the practice of these exercises showed differences in coactivation of the trunk muscles between the exercises and these results were not similar bilaterally. Thus, in clinical practice, the therapist should be aware of factors such as compensation and undesirable rotation movements of the trunk. Moreover, the coactivation of global muscles was higher bilaterally in all exercises analyzed. This suggests that the exercises of Skilled Modern Pilates only should be performed after appropriate learning and correct execution of all principles, mainly the Centering Principle. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Colossoma macropomum, also known as tambaqui, is an economically important fish species, and interesting new studies have been published with the aim of improving the growth of this fish. In this work, we describe the morphometric characteristics, as well as the mRNA and protein expression levels of two myogenic regulatory factors (MRFs)-myod/MyoD and myogenin/Myogenin-in the white and red muscle types of tambaqui. A high proportion of white and red muscle fibers with large diameters suggest a hypertrophic growth process in the skeletal muscle during juvenile stages. Comparisons between muscle types showed that, in red muscle, myogenin transcript levels were significantly higher than those of myod. In contrast, MyoD protein levels were significantly higher than those of Myogenin in red muscle. These results suggest that in red and white muscles of juvenile tambaqui, independent post-transcriptional mechanisms for regulating MyoD and Myogenin expression may exist, which could be differentially activated during muscle growth. Furthermore, these data also suggest that specific control mechanisms may regulate distinct muscle phenotypes. © 2013 The Royal Swedish Academy of Sciences.
Resumo:
Objective: Investigate the influence of apprehensive gait on activation and cocontraction of lower limb muscles of younger and older female adults. Methods: Data of 17 younger (21.47±2.06 yr) and 18 older women (65.33±3.14. yr) were considered for this study. Participants walked on the treadmill at two different conditions: normal gait and apprehensive gait. The surface electromyographic signals (EMG) were recorded during both conditions on: rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), gastrocnemius lateralis (GL), and soleus (SO). Results: Apprehensive gait promoted greater activation of thigh muscles than normal gait (F=5.34 and p=0.007, for significant main effect of condition; RF, p=0.002; VM, p<0.001; VL, p=0.003; and BF, p=0.001). Older adults had greater cocontraction of knee and ankle stabilizer muscles than younger women (F=4.05 and p=0.019, for significant main effect of groups; VM/BF, p=0.010; TA/GL, p=0.007; and TA/SO, p=0.002). Conclusion: Apprehensive gait promoted greater activation of thigh muscles and older adults had greater cocontraction of knee and ankle stabilizer muscles. Thus, apprehensive gait may leads to increased percentage of neuromuscular capacity, which is associated with greater cocontraction and contribute to the onset of fatigue and increased risk of falling in older people. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)