107 resultados para Growth process
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Extracellular matrix remodeling occurs during ovarian follicular development, mediated by plasminogen activators (PAs) and PA inhibitors including protease nexin-1 (PN-1). In the present study we measured expression/activity of the PA system in bovine follicles at different stages of development by timed collection of ovaries during the first follicular wave and during the periovulatory period, and in follicles collected from an abattoir. The abundance of mRNA encoding PN-1, tissue-type PA (tPA), urokinase (uPA) and PA inhibitor-1 (PAI-1) were initially upregulated by human chorionic gonadotropin (hCG) in bovine preovulatory follicular wall homogenates. PN-1, PAI-1 and tPA mRNA expression then decreased near the expected time of ovulation, whereas uPA mRNA levels remained high. PN-1 concentration in follicular fluid (FF) decreased and reached the lowest level at the time of ovulation, whereas plasmin activity in FF increased significantly after hCG. Follicles collected from the abattoir were classified as non-atretic, early-atretic or atretic based on FF estradiol and progesterone content: PN-1 protein levels in FF were significantly higher in non-atretic than in atretic follicles, and plasmin activity was correspondingly higher in the atretic follicles. No changes in PN-1 levels in FF were observed during the growth of pre-deviation follicles early in a follicular wave. These results indicate that PN-1 may be involved in the process of atresia in non-ovulatory dominant follicles and the prevention of precocious proteolysis in periovulatory follicles.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Prostate differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Abundant biological data suggest that androgens play an important role in the development of the prostate cancer and other prostatic diseases. The objective of this work was to evaluate the effects of the testosterone supplementation in gerbil (a new experimental model) at different ages. Tissues from experimental animals were studied by histological and histochemistry procedures, androgen receptor immunohistochemistry assay, morphometric-stereological analysis, and transmission electron microscopy (TEM). After the treatment were observed increase of prostate weight and epithelium height in all ages studied. In some adult and aged treated animals, hyperplasic and displasic process were observed, including prostatic intraepithelial neoplasias and adenocarcinomas. Increase of the thickness of the smooth muscle cell (SMC) layer was observed in pubescent and adult animals and TEM revealed apparent SMC hypertrophy. An apparent increase in the frequency of blood vessels distributed by the subepithelial stroma in the treated animals was noticed. Reversion of the natural effects of aging on the prostate was observed in the aged treated animals in some acini of the gland. These data demonstrate that the gerbil prostate is susceptible to androgenic action at the studied ages and it can serve, for example, as experimental model to studies of prostate neoplasic process induction and hormonal therapy in aged animals.
Resumo:
We study the effects of Jupiter mass growth in order to permanently capture prograde satellites. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time while considering the decrease in Jupiter's mass. We considered the particle's initial conditions to be prograde, at pericenter, in the region 100R(4) <= a <= 400R(4) and 0 <= e <= 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values give an indication of the conditions that are necessary for capture. An analysis of these results shows that prograde satellite capture is more complex than a retrograde one. It occurs in a two-step process. First, when the particles get inside about 0.85R(Hill) (Hills' radius), they become weakly bound to Jupiter. Then, they keep migrating toward the planet with a strong decrease in eccentricity, while the planet is growing. The radial oscillation of the particles reduces significantly when they reach a radial distance that is less than about 0.45R(Hill) from the planet. Three-dimensional simulations for the known prograde satellites of Jupiter were performed. The results indicate that Leda, Himalia, Lysithea, and Elara could have been permanently captured when Jupiter had between 50% and 60% of its present mass.
Resumo:
The structural evolution in silica sols prepared from tetraethoxysilane (TEOS) sonohydrolysis was studied 'in situ' using small-angle x-ray scattering (SAXS). The structure of the gelling system can be reasonably well described by a correlation function given by gamma(r) similar to (1/R(2))(1/r) exp(- r/xi), where xi is the structure correlation length and R is a chain persistence length, as an analogy to the Ornstein-Zernike theory in describing critical phenomenon. This approach is also expected for the scattering from some linear and branched molecules as polydisperse coils of linear chains and random f-functional branched polycondensates. The characteristic length. grows following an approximate power law with time t as xi similar to t(1) (with the exponent quite close to 1) while R remains undetermined but with a constant value, except at the beginning of the process in which the growth of. is slower and R increases by only about 15% with respect to the value of the initial sol. The structural evolution with time is compatible with an aggregation process by a phase separation by coarsening. The mechanism of growth seems to be faster than those typically observed for pure diffusion controlled cluster-cluster aggregation. This suggests that physical forces (hydrothermal forces) could be actuating together with diffusion in the gelling process of this system. The data apparently do not support a spinodal decomposition mechanism, at least when starting from the initial stable acid sol studied here.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Usually, the kinetic models used in the study of sintered ceramic are performed by means of indirect physical tests, such as, results obtained from data of linear shrinkage and mass loss. This fact is justified by the difficulty in the determinations of intrinsic parameters of ceramic materials along every sintering process. In this way, the technique of atomic force microscopy (AFM) was used in order to determine the importance and the evolution of the dihedral angle in the sintering of 0.5 mol% MnO2-doped tin dioxide obtained by the polymeric precursor method.
Resumo:
Time-resolved X-ray absorption-fine structure (Quick-XAFS) and UV-Vis absorption spectroscopies were combined for monitoring simultaneously the time evolution of Zn-based species and ZnO quantum dot (Qdot) formation and growth during the sol-gel synthesis from zinc oxy-acetate precursor solution. The time evolution of the nanostructural features of colloidal suspension was independently monitored in situ by small angle X-ray scattering (SAXS). In both cases, the monitoring was initialized just after the addition of NaOH solution (B = [OH]/[Zn] = 0.5) to the precursor solution at 40 degrees C. Combined time-resolved Quick-XAFS and UV-Vis data showed that the formation of ZnO colloids from the zinc oxy-acetate consumption achieves a quasi-steady-state chemical equilibrium in less than 200s. Afterwards, the comparison of the ZnO Qdots size and Guinier gyration radius evidences a limited aggregation process coupled to the Qdots growth. The analysis of the experimental results demonstrates that the nanocrystal coalescence and Ostwald ripening control the kinetics of the Qdot growth.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 degrees C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of Cu2+ contents and of firing temperature on sintering and crystallite growth of nanocrystalline SnO2 xerogels was analyzed by thermoanalysis (mass loss (TG), linear shrinkage, and differential thermal analysis (DTA)), X-ray powder diffraction (XRPD), and EXAFS (extended X-ray absorption fine structures) measurements. Samples were prepared by two methods: (a) coprecipitation of a colloidal suspension from aqueous solution containing both Sn(IV) and Cu(II) ions and (b) grafting copper(II) species on the surface of tin pride gel. The thermoanalysis has shown that the shrinkage associated with the mass loss decreases by increasing the amount of copper. The EXAFS measurements carried out at the Cu K edge have evidenced the presence of copper in substitutional solid solution for the dried xerogel prepared with 0.7 mol % of copper, while for higher concentration of doping, copper has been observed also at the external surface of crystallites. The solid solution is metastable and copper migrates toward the surface during firing. The XRPD and DTA results have shown a recrystallization process near 320 degrees C, which leads to crystallite growth. The presence of copper segregated near the crystallite surface controls its growth.
Resumo:
3,4,4'-trichlorocarbanilide (TCC) was rested as a new method of bacterial growth control for S. cerevisiae alcoholic fermentations of diluted high test molasses (HTM). Minimal inhibitory concentration (MIC) was tested to determine the necessary concentration of TCC to control bacterial growth. The fed-batch alcoholic fermentation process was used with cell recycle similar to industrial conditions and Lactobacillus fermentum CCT 1407 was mixed in the first inoculum to grow with the yeast. Yeast extract was added into the must to stimulate bacterial growth. The best results of TCC's MIC to bacterial growth of Lactobacillus fermentum and Leuconostoc mesenteroides (< 0.125-1.0 mu g/ml) and Saccharomyces cerevisiae (16 mu g/ml) occurred when it was combined with sodium dodecylsulphate (SDS) in a 1: 4 TCC/SDS ratio (wt/wt) in distilled water solution. 1.8 g/l TCC entrapped in calcium alginate added to the must with yeast extract inhibited the growth of Lactobacillus fermentum CCT 1407 maintaining a controlled acidity, higher yeast viability and up to 20.8% of improvement in the average of alcoholic efficiency. Addition of 0.075 g/l TCC entrapped in calcium alginate and 1.67 mg/l SDS in the wort with yeast extract (0-5.0 g/l), inhibited and controlled the extensive bacterial contamination for 19 cycles of fermentation. (C) 1998 Published by Elsevier B.V. Ltd.
Resumo:
Oils from Buriti (Mauritia flexuosa), Cupuacu (Theobroma grandiflora), Passion Fruit (Passiflora alata), Andiroba (Carapa gitianensis), Brazilian Nut (Bertholletia excelsa) and Babassu (Orbignya spp.) were evaluated as carbon sources for rhamnolipid production by Pseudomonas aeruginosa LBI. The highest rhamnolipid concentrations were obtained from Brazilian Nut (9.9 l(-1)) and Passion Fruit (9.2 g l(-1)) oils. Surface tension varied from 29.8 to 31.5 mN m(-1), critical micelle concentration from 55 to 163 mg l(-1) and the emulsifying activity was higher against toluene (93-100%) than against kerosene (70-92%). Preliminary characterization of the surfactant mixtures by mass spectrometry revealed the presence of two major components showing m/z of 649 and 503, which corresponded to the dirhamnolipid (Rha(2)C(10)C(10)) and the monorhamnolipid (RhaC(10)C(10)), respectively. The monorhamnolipid detected as the ion of m/z 503 is predominant in all samples analyzed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The influence of the substrate temperature on the structural features and opto-electrical properties of undoped and indium-doped ZnO thin films deposited by pyrosol process was investigated. The addition of indium induces a drastic decrease (by a factor approximate to 10(10) for samples deposited at 300 degreesC) in the electrical resistivity of films, the lowest electrical resistivity (6 mOmega-cm) being observed for the film deposited at 450 degreesC. Films are highly transparent (>80%) in the Vis-NIR ranges, and the optical band gap exhibits a blue shift (from 3.29 to 3.33 eV) for the In-doped films deposited at increasing temperature. Preferential orientation of the ZnO crystallites with the c-axis perpendicular to the substrate surface and an anisotropic morphology of the nanoporous structure was observed for films growth at 300 and 350 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.