131 resultados para GPS Cinematico GNSS
Resumo:
Point positioning from GPS data can provide precision varying from 100 meters to a few millimeters at the level of 95% probability. To reach the best level of accuracy, users need proper equipment and software, as well as access capability to GPS products available at the International GPS Geodynamics Service. In this paper, the theory related to point positioning using GPS is presented as well as the results of an experiment conducted using data from the Brazilian Active Control System. The results show repeatability better than 5mm and 10mm for the N and E baseline components respectively, and 6mm + 4ppb (parts per billion) for the vertical. Comparison with SIRGAS campaign showed results at the same level of uncertainty as that of the stations used to tie the SIRGAS frame to ITRF94. Therefore, precise point positioning is a powerful tool to be used in applications requiring high level of precision, such as Geodynamics.
Resumo:
The multipath effect affects the differential and relative positioning, even that one involving short baselines. So it is necessary to detect this effect, check the caused error level, and mainly, its removal. This paper aims at analysing and comparing some useful components in the detection of this effect. These components are the Signal to Noise Ratio (SNR), the values of MP1 and MP2 obtained from the TEQC software that indicates the multipath level in the carriers L1 and L2, the multipath repeatability in consecutive days and the elevation angle and the azimuth of the satellites. For this purpose, an experiment is carried out, comparing such components in the presence and the absence of reflector objects that cause the multipath. Not only there is clear multipath repeatability in the residuals, but it also appears in the measures SNR, MP1 and MP2, reaching up 99% of correlation. For reduction, at least, of the high frequency multipath effect, the Multi-Resolution Analysis using wavelets is applied in the double differences (DD) measures. Some statistical tests were accomplished, which indicate results improvement, and mainly, larger reliability in the solution of the ambiguities, reaching up 49% of improvement concerning the Ratio test without applying the proposed method.
Resumo:
Single frequency GPS receivers have been many used in GPS surveys. Among the several applications, one can mention those that are to obtain the receiver's antenna coordinates in real time. One of the main error sources to these applications is the ionosphere systematic error. In the FCT/UNESP a regional ionosphere model (Mod_Ion) was developed. It has been implemented to execute after collecting of GPS data. At real time application two improvements in the Mod_Ion were introduced, consisting of an alteration of the function of modeling and implementation of the Kalman Filter. The results of the experiments showed that the modifications were the most effective in the ionosphere systematic effect's corrections, providing a improvement in the accuracy of point positioning, of 90,75%, in period of the highest ionosphere activity.
Resumo:
The error associated with the ionosphere depends on Total Electron Content (TEC) of the ionosphere. The geomagnetic field exerts strong influence in the TEC variation, because it controls the movement of the electrons. After solar events the magnetic lines of force can be compressed, characterizing the geomagnetic storm. The aim of this paper is to present to geodesic community the effects of a geomagnetic storm in the relative positioning. The processing of the data was accomplished with an interval of two hours, with a 430 km baseline. The analyze of the obtained results have been carried out from the discrepancies between the true coordinates and corresponding ones obtained in the processing of the baseline. The used data in this paper include the period of 30/03/2001 up to 02/04/2001. In March 31 a strong geomagnetic storm happened. One day after, that it corresponds to main phase of the storm, the values of the discrepancies decreased significantly. For instance, in 01:00-03:00 UT period, the value of the planimetric discrepancy reached 20 m in the storm day. However, in the main phase of the storm, the planimetric discrepancy decreased to 0.1 m.
Resumo:
The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country,. It provides users with a direct link to the Brazilian Geodetic System - SGB. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic system, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 system in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project.
Resumo:
This work analyses a real time orbit estimator using the raw navigation solution provided by GPS receivers. The estimation algorithm considers a Kalman filter with a rather simple orbit dynamic model and random walk modeling of the receiver clock bias and drift. Using the Topex/Poseidon satellite as test bed, characteristics of model truncation, sampling rates and degradation of the GPS receiver (Selective Availability) were analysed. Copyright © 2007 by ABCM.
Resumo:
One of the main drawbacks of the GPS accuracy for L1 users is the error due to ionosphere. This error depends on the total electron content presents in the ionosphere, as well as of the carrier frequency. Some models have been developed to correct GPS observables of the systematic error due to the ionosphere. The model more known and used is the Klobuchar model, which corrected 50-60% of the ionospheric error approximately. Alternatively, IGS (International GNSS Service) also has developed a model called Global Ionospheric Map (GIM). These maps, in format IONEX, are available in the site of the IGS, and one of the applications of them is to correct the GPS observables of the error due to ionosphere. This work aims at evaluating the quality of GPS point positioning using the IGS ionospheric model in the Brazilian region. Tests carried out had shown an average improvement in the horizontal and vertical determination of 72% and 26%, respectively, when GIM is used in the point positioning.
Resumo:
The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Nowadays, with the expansion of the reference stations networks, several positioning techniques have been developed and/or improved. Among them, the VRS (Virtual Reference Station) concept has been very used. In this paper the goal is to generate VRS data in a modified technique. In the proposed methodology the DD (double difference) ambiguities are not computed. The network correction terms are obtained using only atmospheric (ionospheric and tropospheric) models. In order to carry out the experiments it was used data of five reference stations from the GPS Active Network of West of São Paulo State and an extra station. To evaluate the VRS data quality it was used three different strategies: PPP (Precise Point Positioning) and Relative Positioning in static and kinematic modes, and DGPS (Differential GPS). Furthermore, the VRS data were generated in the position of a real reference station. The results provided by the VRS data agree quite well with those of the real file data.
Resumo:
In the Brazil, several have been the applications of GPS and with the introduction of the Law 10.267/2001 that among other dispositions, it treats of the georeferencing of the rural parcels. However, most of the commercial softwares of processing and adjustment of GPS data doesn't allow that the users may evaluate their results in a reliable way. For example, the constraints are normally used as absolute, which provides results with very optimists precisions. The adoption of additional analyses and the implementation of softwares can reduce these kinds of problems. Thus, it was developed a software for adjustment of GPS networks, aiming to assist in a reliable way the requirements of the Law 10.267/2001. In this context, in this work it is analyzed the adjustments of GPS networks, utilizing absolute and relative constraints. In the case of the last one, the adjustments were accomplished considering and not considering the correlations among the coordinate positions.
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and / or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country. It provides to users a direct link to the Brazilian Geodetic System. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic frame, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1 σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 frame in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning, will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project. © Springer-Verlag Berlin Heidelberg 2009.
Resumo:
This paper aims to evaluate the quality of the pseudorange observables generated for a Virtual Reference Station (VRS). In order to generate the VRS data three different approaches were implemented and tested. In the first one, raw data from the reference station network were used while in the second it was based on double difference reference station corrections. Finally, in the third approach atmospheric models (ionosphere and troposphere) were used to create the VRS data. Sao Paulo State Network stations were used in all experiments. The VRS data were generated in a reference station position of known coordinates (real file). In order to validate the approaches, the VRS data were compared with the real data file. The results were quite similar, reaching the decimeter or centimeter level, depending on the approach applied.
Resumo:
The upcoming solar maximum, which is expected to reach its peak around May 2013, occurs at a time when our reliance on high-precision GNSS has reached unprecedented proportions. The perturbations of the ionosphere caused by increased solar activity pose a major threat to these applications. This is particularly true in equatorial regions where high exposure to solar-induced disturbances is coupled with explosive growth of precise GNSS applications. Along with the various types of solar-induced ionospheric disturbances, strong scintillations are amongst the most challenging, causing phase measurement errors up to full losses of lock for several satellites. Brazil, which heavily relies on high-precision GNSS, is one of the most affected regions due notably to the proximity to the southern crest of the ionospheric equatorial anomaly and to the South Atlantic Magnetic Anomaly. In the framework of the CIGALA project, we developed the PolaRxS™, a GNSS receiver dedicated to the monitoring of ionospheric scintillation indices not only in the GPS L1 band but for all operational and upcoming constellations and frequency bands. A network of these receivers was deployed across the whole Brazilian territory in order to first investigate and secondly to mitigate the impact of scintillation on the different signals, ensuring high precision GNSS availability and integrity in the area. This paper reports on the validation of the PolaRxS™ receiver as an ionospheric scintillation monitor and the first results of the analysis of the data collected with the CIGALA network.
Resumo:
In the present paper a study is made in order to find an algorithm that can calculate coplanar orbital maneuvers for an artificial satellite. The idea is to find a method that is fast enough to be combined with onboard orbit determination using GPS data collected from a receiver that is located in the satellite. After a search in the literature, three algorithms are selected to be tested. Preliminary studies show that one of them (the so called Minimum Delta-V Lambert Problem) has several advantages over the two others, both in terms of accuracy and time required for processing. So, this algorithm is implemented and tested numerically combined with the orbit determination procedure. Some adjustments are performed in this algorithm in the present paper to allow its use in real-time onboard applications. Considering the whole maneuver, first of all a simplified and compact algorithm is used to estimate in real-time and onboard the artificial satellite orbit using the GPS measurements. By using the estimated orbit as the initial one and the information of the final desired orbit (from the specification of the mission) as the final one, a coplanar bi-impulsive maneuver is calculated. This maneuver searches for the minimum fuel consumption. Two kinds of maneuvers are performed, one varying only the semi major axis and the other varying the semi major axis and the eccentricity of the orbit, simultaneously. The possibilities of restrictions in the locations to apply the impulses are included, as well as the possibility to control the relation between the processing time and the solution accuracy. Those are the two main reasons to recommend this method for use in the proposed application.