85 resultados para GLUTAMATE SYNTHASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, there are 8 million new cases and 2 million deaths annually from tuberculosis, and it is expected that a total of 225 million new cases and 79 million deaths will occur between 1998 and 2030. The reemergence of tuberculosis as a public health threat, the high susceptibility of HIV-infected persons, and the proliferation of multi-drug-resistant strains have created a need to develop new antimycobacterial agents. The existence of homologues to the shikimate pathway enzymes has been predicted by the determination of the genome sequence of Mycobacterium tuberculosis. We have previously reported the cloning and overexpression of M. tuberculosis aro A-encoded EPSP synthase in both soluble and active forms, without IPTG induction. Here, we describe the purification of M. tuberculosis EPSP synthase (mtEPSPS) expressed in Escherichia coli BL21(DE3) host cells. Purification of mtEPSPS was achieved by a one-step purification protocol using an anion exchange column. The activity of the homogeneous enzyme was measured by a coupled assay using purified shikimate kinase and purine nucleoside phosphorylase proteins. A total of 53 mg of homogeneous enzyme could be obtained from 1 L of LB cell culture, with a specific activity value of approximately 18 U mg-1. The results presented here provide protein in quantities necessary for structural and kinetic studies, which are currently underway in our laboratory. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was designed to evaluate the effects of aerobic exercise training on glucose tolerance and insulin secretion of obese male Wistar rats (monosodium glutamate [MSG] administration, 4mg/g-body weight, each other day, from birth to the 14th day). Fourteen weeks after the drug administration, the rats were separated into two groups: MSG-S (sedentary) and MSG-T (T = swimming, 1 h/day, 5 days/week, with an overload of 5% body weight for 10 weeks). Rats of the same age and strain injected with saline were used as control (C) and subdivided into two groups: C-S and C-T. Insulin and glucose responses during an oral glucose tolerance test (GTT) were evaluated by the estimation of the total areas under serum insulin (AI) and glucose (AG) curves. Glucose-induced insulin secretion by isolated pancreatic islets was also evaluated. MSG-S rats showed higher AI than C-rats while MSG-T rats presented lower AI than MSG-S rats. No differences in AG were observed among the 4 groups. Pancreatic islets from MSG-rats showed higher insulin secretion in response to low (2.8) and moderate (8.3 mM) concentrations of glucose than those from their control counterparts and no differences were observed between MSG-S and MSG-T rats. These results provide evidences that the hyperinsulinemia at low or moderate glucose concentrations observed in MSG-obese rats is, at least in part, a consequence of direct hypersecretion of the B cells and that chronic aerobic exercise is able to partially counteract the hyperinsulinemic state of these animals without disrupting glucose homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alterations in the synthesis or enhanced inactivation of nitric oxide (NO) and increase in fibrin deposition in the vascular bed lead to an imbalance that can induced intravascular coagulation. NO is produced through L-arginine pathway by constitutive and inducible nitric oxide synthase (NOS). The inducible isoform can be activated by cytokines such as tumor necrosis factor alfa. We evaluated NO-induced tissue-plasminogen activator (t-PA) release from isolated aortic segments of Wistar rats measuring the fibrinolytic activity in the fibrin plate. Inhibition of NO biossynthesis with Nω-nitro-L-arginine (NωNLA) significantly attenuated the fibrinolytic activity (FA) evoked by aortic segments of this group (GII) compared to the saline group (GI). The administration of L-arginine produced restoration of FA in this group (GIII) treated with NωNLA suggesting that t-PA arising from segments of rat aorta is influenced by NO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examines the effects of a hypercaloric diet on hepatic glucose metabolism of young rats, with and without monosodium glutamate (MSG) administration, and the association of these treatments with evaluating markers of oxidative stress. Male weaned Wistar rats (21 days old) from mothers fed with a hypercaloric diet or a normal diet, were divided into four groups (n=6): control (C) fed with control diet; (MSG) treated with MSG (4 mg/g) and control diet; (HD) fed with hypercaloric diet and (MSG-HD) treated with MSG and HD. Rats were sacrificed after the oral glucose tolerance test (OGTT), at 45 days of treatments. Serum was used for insulin determination. Glycogen, hexokinase(HK), glucose-6-phosphatase(G6PH), lipid hydroperoxide, superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) were determined in liver. HD rats showed hypoglycemia, hyperinsulinemia, and high hepatic glycogen, HK and decreased G6PH. MSG and MSG-HD had hyperinsulinemia, hyperglycemia, decreased HK and increased G6PH in hepatic tissue. These animals had impaired OGTT. HD, MSG and MSG-HD groups had increased lipid hydroperoxide and decreased SOD in hepatic tissue. Hypercaloric diet and monosodium glutamate administration induced alterations in metabolic rate of glucose utilization and decreased antioxidant defenses. Therefore, the hepatic glucose metabolic shifting induced by HD intake and MSG administration were associated with oxidative stress in hepatic tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality due to a bacterial pathogen. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of multi-drug resistant strains (MDR-TB), defined as resistant to isoniazid and rifampicin, and 79% of MDR-TB cases are now super strains, resistant to at least three of the four main drugs used to treat TB. Thus there is a need for the development of effective new agents to treat TB. The shikimate pathway is an attractive target for the development of antimycobacterial agents because it has been shown to be essential for the viability of M. tuberculosis, but absent from mammals. The M. tuberculosis aroG-encoded 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (mtDAHPS) catalyzes the first committed step in this pathway. Here we describe the PCR amplification, cloning, and sequencing of aroG structural gene from M. tuberculosis H37Rv. The expression of recombinant mtDAHPS protein in the soluble form was obtained in Escherichia coli Rosetta-gami (DE3) host cells without IPTG induction. An approximately threefold purification protocol yielded homogeneous enzyme with a specific activity value of 0.47 U mg-1 under the experimental conditions used. Gel filtration chromatography results demonstrate that recombinant mtDAHPS is a pentamer in solution. The availability of homogeneous mtDAHPS will allow structural and kinetics studies to be performed aiming at antitubercular agents development. © 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: This study determined the effects of adding monosodium glutamate (MSG) to a standard diet and a fiber-enriched diet on glucose metabolism, lipid profile, and oxidative stress in rats. Methods: Male Wistar rats (65 ± 5 g, n = 8) were fed a standard diet (control), a standard diet supplemented with 100 g of MSG per kilogram of rat body weight, a diet rich in fiber, or a diet rich in fiber supplemented with 100 g of MSG per kilogram of body weight. After 45 d of treatment, sera were analyzed for concentrations of insulin, leptin, glucose, triacylglycerol, lipid hydroperoxide, and total antioxidant substances. A homeostasis model assessment index was estimated to characterize insulin resistance. Results: Voluntary food intake was higher and feed efficiency was lower in animals fed the standard diet supplemented with MSG than in those fed the control, fiber-enriched, or fiber- and MSG-enriched diet. The MSG group had metabolic dysfunction characterized by increased levels of glucose, triacylglycerol, insulin, leptin, and homeostasis model assessment index. The adverse effects of MSG were related to an imbalance between the oxidant and antioxidant systems. The MSG group had increased levels of lipid hydroperoxide and decreased levels of total antioxidant substances. Levels of triacylglycerol and lipid hydroperoxide were decreased in rats fed the fiber-enriched and fiber- and MSG-enriched diets, whereas levels of total antioxidant substances were increased in these animals. Conclusions: MSG added to a standard diet increased food intake. Overfeeding induced metabolic disorders associated with oxidative stress in the absence of obesity. The fiber-enriched diet prevented changes in glucose, insulin, leptin, and triacylglycerol levels that were seen in the MSG group. Because the deleterious effects of MSG, i.e., induced overfeeding, were not seen in the animals fed the fiber-enriched diets, it can be concluded that fiber supplementation is beneficial by discouraging overfeeding and improving oxidative stress that is induced by an MSG diet. © 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study investigated the central role of angiotensin II and nitric oxide on arterial blood pressure (MAP) in rats. Losartan and PD123349 AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), as well as FK 409 (a nitric oxide donor), N W-nitro-L-arginine methyl ester (L-NAME) a constituve nitric oxide synthase inhibitor endothelial (eNOSI) and 7-nitroindazol (7NI) a specific neuronal nitric oxide synthase inhibitor (nNOSI) were used. Holtzman strain, (Rattus norvergicus) weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125 mg and zolazepan chloridrate 125 mg) into quadriceps muscle anda stainless steel cannula was stereotaxically implanted into their Lateral Ventricle (LV). Controls were injected with a 0.5 μl volume of 0.15 M NaCl. Angiotensin II injected into LV increased MAP (19±3 vs. control 3±1 mm Hg), which is potentiated by prior injection of L-NAME in the same site 26±2 mm Hg. 7NI injected prior to ANG II into LV also potentiated the pressor effect of ANG II but with a higher intensity than L-NAME 32±3 mm Hg. FK 409 inhibited the pressor effect of ANG II (6±1 mm Hg). Losartan injected into LV before ANG II influences the pressor effect of ANG II (8±1 mm Hg). The PD 123319 decreased the pressor effects of ANG II (16±1 mm Hg). Losartan injected simultaneously with FK 409 blocked the pressor effect of ANG II (3±1 mm Hg). L-NAME produced an increase in the pressor effect of ANG II, may be due to local vasoconstriction and all at once by neuronal NOS inhibition but the main effect is of the 7-NIT an specific nNOS inhibitor. The AT 1 antagonist receptors improve basal nitric oxide (NO) production and release. These data suggest the involvement of constitutive and neuronal NOS in the control of arterial blood pressure induced by ANG II centrally, evolving AT 1 receptor-mediated vasoconstriction and AT 2 receptor-mediated vasodilatation. These results were confirmed by the experiment using FK 409. © 2006 Asian Network for Scientific Information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in incidence of infectious diseases worldwide, particularly in developing countries, is worrying. Each year, 14 million people are killed by infectious diseases, mainly HIV/AIDS, respiratory infections, malaria and tuberculosis. Despite the great burden in the poor countries, drug discovery to treat tropical diseases has come to a standstill. There is no interest by the pharmaceutical industry in drug development against the major diseases of the poor countries, since the financial return cannot be guaranteed. This has created an urgent need for new therapeutics to neglected diseases. A possible approach has been the exploitation of the inhibition of unique targets, vital to the pathogen such as the shikimate pathway enzymes, which are present in bacteria, fungi and apicomplexan parasites but are absent in mammals. The chorismate synthase (CS) catalyses the seventh step in this pathway, the conversion of 5-enolpyruvylshikimate-3-phosphate to chorismate. The strict requirement for a reduced flavin mononucleotide and the anti 1,4 elimination are both unusual aspects which make CS reaction unique among flavin-dependent enzymes, representing an important target for the chemotherapeutic agents development. In this review we present the main biochemical features of CS from bacterial and fungal sources and their difference from the apicomplexan CS. The CS mechanisms proposed are discussed and compared with structural data. The CS structures of some organisms are compared and their distinct features analyzed. Some known CS inhibitors are presented and the main characteristics are discussed. The structural and kinetics data reviewed here can be useful for the design of inhibitors. © 2007 Bentham Science Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EPSP synthase (EPSPS) is an essential enzyme in the shikimate pathway, transferring the enolpyruvyl group of phosphoenolpyruvate to shikimate-3-phosphate to form 5-enolpyruvyl-3-shikimate phosphate and inorganic phosphate. This enzyme is composed of two domains, which are formed by three copies of βαβαββ-folding units; in between there are two crossover chain segments hinging the nearly topologically symmetrical domains together and allowing conformational changes necessary for substrate conversion. The reaction is ordered with shikimate-3-phosphate binding first, followed by phosphoenolpyruvate, and then by the subsequent release of phosphate and EPSP. N-[phosphomethyl]glycine (glyphosate) is the commercial inhibitor of this enzyme. Apparently, the binding of shikimate-3-phosphate is necessary for glyphosate binding, since it induces the closure of the two domains to form the active site in the interdomain cleft. However, it is somehow controversial whether binding of shikimate-3-phosphate alone is enough to induce the complete conversion to the closed state. The phosphoenolpyruvate binding site seems to be located mainly on the C-terminal domain, while the binding site of shikimate-3-phosphate is located primarily in the N-terminal domain residues. However, recent results demonstrate that the active site of the enzyme undergoes structural changes upon inhibitor binding on a scale that cannot be predicted by conventional computational methods. Studies of molecular docking based on the interaction of known EPSPS structures with (R)- phosphonate TI analogue reveal that more experimental data on the structure and dynamics of various EPSPS-ligand complexes are needed to more effectively apply structure-based drug design of this enzyme in the future. © 2007 Bentham Science Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Septic shock or sepsis is reported to be one of the major causes of death when followed by systemic infectious trauma in humans and other mammals. Its development leads to a large drop in blood pressure and a reduction in vascular responsiveness to physiological vasoconstrictors which, if not contained, can lead to death. It is proposed that this vascular response is due to the action of bacterial cell wall products released into the bloodstream by the vascular endothelium and is considered a normal response of the body's defenses against infection. A reduction in vascular reactivity to epinephrine and norepinephrine is observed under these conditions. In the present study in rats, the aim was to assess whether those effects of hypotension and hyporeactivity are also related to another endogenous vasoconstrictor, angiotensin II (AII). We evaluated the variation in the power of this vasoconstrictor over the mean arterial pressure in anesthetized rats, before and after the establishment of hypotension by Escherichia coli endotoxin (Etx). Our results show that in this model of septic shock, there is a reduction in vascular reactivity to AII and this reduction can be reversed by the inhibitor of nitric oxide synthase, Nω-Nitro-L- Arginine (NωNLA). Our results also suggest that other endogenous factors (not yet fully known) are involved in the protection of rats against septic shock, in addition to the L-arginine NO pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB). The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS) is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF) sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results. In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS), molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMN ox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion. This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and proton inventory results indicate that proton transfer from solvent partially limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent isotope effect. Multiple isotope effects suggest a stepwise mechanism for the reduction of FMNox. The results on enzyme kinetics described here provide evidence for the mode of action of MtCS and should thus pave the way for the rational design of antitubercular agents. © 2008 Ely et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the involvement of paraventricular nucleus of the hypothalamus (PVN) glutamate receptors in the modulation of autonomic (arterial blood pressure, heart rate and tail skin temperature) and neuroendocrine (plasma corticosterone) responses and behavioral consequences evoked by the acute restraint stress in rats was investigated. The bilateral microinjection of the selective non-NMDA glutamate receptor antagonist NBQX (2 nmol/ 100 nL) into the PVN reduced the arterial pressure increase as well as the fall in the tail cutaneous temperature induced by the restraint stress, without affecting the stress-induced tachycardiac response. On the other hand, the pretreatment of the PVN with the selective NMDA glutamate receptor antagonist LY235959 (2 nmol/100 nL) was able to increase the stress-evoked pressor and tachycardiac response, without affecting the fall in the cutaneous tail temperature. The treatment of the PVN with LY235959 also reduced the increase in plasma corticosterone levels during stress and inhibited the anxiogenic-like effect observed in the elevated plus-maze 24 h after the restraint session. The present results show that NMDA and non-NMDA receptors in the PVN differently modulate responses associated to stress. The PVN glutamate neurotransmission, via non-NMDA receptors, has a facilitatory influence on stress-evoked autonomic responses. On the other hand, the present data point to an inhibitory role of PVN NMDA receptors on the cardiovascular responses to stress. Moreover, our findings also indicate an involvement of PVN NMDA glutamate receptors in the mediation of the plasma corticosterone response as well as in the delayed emotional consequences induced by the restraint stress. © 2012 Elsevier B.V. and ECNP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity. © 2013 Galvão et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The fungus Paracoccidioides spp is the agent of paracoccidioidomycosis (PCM), a pulmonary mycosis acquired by the inhalation of fungal propagules. Paracoccidioides malate synthase (PbMLS) is important in the infectious process of Paracoccidioides spp because the transcript is up-regulated during the transition from mycelium to yeast and in yeast cells during phagocytosis by murine macrophages. In addition, PbMLS acts as an adhesin in Paracoccidioides spp. The evidence for the multifunctionality of PbMLS indicates that it could interact with other proteins from the fungus and host. The objective of this study was to identify and analyze proteins that possibly bind to PbMLS (PbMLS-interacting proteins) because protein interactions are intrinsic to cell processes, and it might be possible to infer the function of a protein through the identification of its ligands. Results: The search for interactions was performed using an in vivo assay with a two-hybrid library constructed in S. cerevisiae; the transcripts were sequenced and identified. In addition, an in vitro assay using pull-down GST methodology with different protein extracts (yeast, mycelium, yeast-secreted proteins and macrophage) was performed, and the resulting interactions were identified by mass spectrometry (MS). Some of the protein interactions were confirmed by Far-Western blotting using specific antibodies, and the interaction of PbMLS with macrophages was validated by indirect immunofluorescence and confocal microscopy. In silico analysis using molecular modeling, dynamics and docking identified the amino acids that were involved in the interactions between PbMLS and PbMLS-interacting proteins. Finally, the interactions were visualized graphically using Osprey software. Conclusion: These observations indicate that PbMLS interacts with proteins that are in different functional categories, such as cellular transport, protein biosynthesis, modification and degradation of proteins and signal transduction. These data suggest that PbMLS could play different roles in the fungal cell. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of prognostic markers for breast cancer allows therapeutic strategies to be defined more efficiently. The expression of glutathione (GSH) and glutathione peroxidase (GPX) in tumor cells has been evaluated as a predictor of prognosis and response to cytotoxic treatments. Its immunoexpression was assessed in 63 women diagnosed with invasive ductal carcinoma in a retrospective study. The results showed that high GSH expression was associated with tumors negative for the estrogen receptor (ER) (P<0.05), and GPX expression was associated with tumors negative for the progesterone receptor (PR) and patient mortality. Focusing on the 37 patients who received adjuvant chemotherapy/radiotherapy (Group I), high expression of GPX was associated with a high rate of patient mortality (P<0.05). The 19 patients who received only adjuvant chemotherapy (Group II) showed high expression of GSH in relation to metastasis (P<0.05). In addition, high levels of GPX expression were significantly associated with a shorter overall survival (P<0.05). To confirm this, the expression of precursor genes of GSH [glutamate cysteine ligase (GCLC) and glutathione synthetase (GSS)] and the GPX gene was analyzed using quantitative PCR in cultured neoplastic mammary cells treated with doxorubicin. Doxorubicin treatment was able to eliminate tumor cells without alterations in the gene expression of GSS, but led to underexpression of the GCLC and GPX genes. Our results suggest that high levels of GPX may be related to the development of resistance to chemotherapy in these tumors, response to treatment and the clinical course of the breast cancer patients.