184 resultados para Fuzzy equivalence
Resumo:
The task of controlling urban traffic requires flexibility, adaptability and handling uncertain information spread through the intersection network. The use of fuzzy sets concepts convey these characteristics to improve system performance. This paper reviews a distributed traffic control system built upon a fuzzy distributed architecture previously developed by the authors. The emphasis of the paper is on the application of the system to control part of Campinas downtown area. Simulation experiments considering several traffic scenarios were performed to verify the capabilities of the system in controlling a set of coupled intersections. The performance of the proposed system is compared with conventional traffic control strategies under the same scenarios. The results obtained show that the distributed traffic control system outperforms conventional systems as far as average queues, average delay and maximum delay measures are concerned.
Resumo:
Starting from a decomposition of the self-dual field in (2 + 1) dimensions, we build up an alternative quantum theory which consists of a self-dual model coupled to a Maxwell-generalized Chern-Simons theory. We discuss the fermion-boson equivalence of this quantum theory by comparing it with the Thirring model. Using these results we were able to compute the mass of the bosonized fermions up to third order in 1/m. Some problems related to the number of poles of the effective propagator are also addressed.
Resumo:
We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A strict proof of the equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon Fock theories is presented for physical S-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin - Kemmer Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the S-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.
Resumo:
Relaxed conditions for the stability study of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. These results are also used for the fuzzy regulators design. The nonlinear systems are represented by the fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by LMIs (Linear Matrix Inequalities), that can be solved efficiently by convex programming techniques. The specification of the decay rate, constraints on control input and output are also described by LMIs. Finally, the proposed design method is applied in the control of an inverted pendulum.
Resumo:
In some applications with case-based system, the attributes available for indexing are better described as linguistic variables instead of receiving numerical treatment. In these applications, the concept of fuzzy hypercube can be applied to give a geometrical interpretation of similarities among cases. This paper presents an approach that uses geometrical properties of fuzzy hypercube space to make indexing and retrieval processes of cases.
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180° out of phase.
Resumo:
This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems. A novel approach, which uses unconstrained optimization techniques, is developed in order to adjust the free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through an estimation of time series. More specifically, the Mackey-Glass chaotic time series estimation is used for the validation of the proposed methodology.
Resumo:
In this work we present a mapping between the classical solutions of the sine-Gordon, Liouville, λφ4 and other kinks in 1+1 dimensions. This is done by using an invariant quantity which relates the models. It is easily shown that this procedure is equivalent to that used to get the so called deformed solitons, as proposed recently by Bazeia et al. [Phys. Rev. D. 66 (2002) 101701(R)]. The classical equivalence is explored in order to relate the solutions of the corresponding models and, as a consequence, try to get new information about them. We discuss also the difficulties and consequences which appear when one tries to extend the deformation in order to take into account the quantum version of the models.
Resumo:
A comparative study, with theoretical analysis and digital simulations, of two conditions based on LMI for the quadratic stability of nonlinear continuous-time dynamic systems, described by Takagi-Sugeno fuzzy models, are presented. This paper shows that the methods proposed by Teixeira et. al. in 2003 provide better or at least the same results of a recent method presented in the literature. © 2005 IEEE.
Resumo:
It is commonly assumed that the equivalence principle can coexist without conflict with quantum mechanics. We shall argue here that, contrary to popular belief, this principle does not hold in quantum mechanics. We illustrate this point by computing the second-order correction for the scattering of a massive scalar boson by a weak gravitational field, treated as an external field. The resulting cross-section turns out to be mass-dependent. A way out of this dilemma would be, perhaps, to consider gravitation without the equivalence principle. At first sight, this seems to be a too much drastic attitude toward general relativity. Fortunately, the teleparallel version of general relativity - a description of the gravitational interaction by a force similar to the Lorentz force of electromagnetism and that, of course, dispenses with the equivalence principle - is equivalent to general relativity, thus providing a consistent theory for gravitation in the absence of the aforementioned principle. © World Scientific Publishing Company.
Resumo:
Informatics evolution presently offers the possibility of new technique and methodology development for studies in all human knowledge areas. In addition, the present personal computer capacity of handling a large volume of data makes the creation and application of new analysis tools easy. This paper aimed the application of a fuzzy partition matrix to analyze data obtained from the Landsat 5 TMN sensor, in order to elaborate the supervised classification of land use in Arroio das Pombas microbasin in Botucatu, SP, Brazil. It was possible that one single training area present input in more than one covering class due to weight attribution at the signature creation moment. A change in the classification result was also observed when compared to maximum likelihood classification, mainly when related to bigger uniformity and better class edges classification.
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in gray shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the gray shades making up the image, and thus calculate the appropriateness of the pixels in relation to an homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. © 2007 IEEE.