190 resultados para Fusarium solani
Resumo:
Anastomosis group 3 (AG-3) of Rhizoctonia solani (teleomorph = Thanatephorus cucumeris) is frequently associated with diseases of potato (AG-3 PT) and tobacco (AG-3 TB). Although isolates of R. solani AG-3 from these two Solanaceous hosts are somatically related based on anastomosis reaction and taxonomically related based on fatty acid, isozyme and DNA characters, considerable differences are evident in their biology, ecology, and epidemiology. However, genetic diversity among field populations of R. solani AG-3 PT and TB has not been documented. In this study, the genetic diversity of field populations of R. solani AG-3 PT and AG-3 TB in North Carolina was examined using somatic compatibility and amplified fragment length polymorphism (AFLP) criteria. A sample of 32 isolates from potato and 36 isolates from tobacco were paired in all possible combinations on PDA plus activated charcoal and examined for their resulting somatic interactions. Twenty-eight and eight distinct somatic compatibility groups (SCG) were identified in the AG-3 PT and AG-3 TB samples, respectively. AFLP analyses indicated that each of the 32 AG-3 PT isolates had a distinct AFLP phenotype, whereas 28 AFLP phenotypes were found among the 36 isolates of AG-3 TB. None of the AG-3 PT isolates were somatically compatible or shared a common AFLP phenotype with any AG-3 TB isolate. Clones (i.e., cases where two or more isolates were somatically compatible and shared the same AFLP phenotype) were identified only in the AG-3 TB population. Four clones from tobacco represented 22% of the total population. All eight SCG from tobacco were associated with more than one AFLP phenotype. Compatible somatic interactions between AG-3 PT isolates occurred only between certain isolates from the same field (two isolates in each of four different fields), and when this occurred AFLP phenotypes were similar but not identical.
Resumo:
A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was developed to identify and differentiate genotypes of Rhizoctonia solani anastomosis group 3 subgroup PT (AG-3 PT), a fungal pathogen of potato. Polymorphic co-dominant single-locus PCR-RFLP markers were identified after sequencing of clones from a genomic library and digestion with restriction enzymes. Multilocus genotypes were determined by a combination of PCR product and digestion with a specific restriction enzyme for each of seven loci. A sample of 104 isolates from one commercial field in each of five counties in eastern North Carolina was analyzed, and evidence for high levels of gene flow between populations was revealed. When data were clone-corrected and samples pooled into one single North Carolina population, random associations of alleles were found for all loci or pairs of loci, indicating random mating. However, when all genotypes were analyzed, the observed genotypic diversity deviated from panmixia and alleles within and between loci were not randomly associated. These findings support a model of population structure for R. solani AG-3 PT on potato that includes both recombination and clonality.
Resumo:
Rhizoctonia solani causes pre- and post-emergence damping-off, root and hypocotyl rot and foliar blight in soybean. Foliar blight has resulted in yield losses of 31-60% in north and northeast Brazil. The aim of this study was to characterize isolates of R. solani associated with soybean in Brazil. Among 73 Rhizoctonia isolates examined, six were binucleate and 67 were multinucleate. The multinucleate isolates were characterized according to hyphal anastomosis reaction, mycelial growth rate, thiamine requirement, sclerotia production, and RAPD molecular markers. Four isolates that caused hypocotyl rot belonged to AG-4 and using RAPD analysis they grouped together with the HGI subgroup. Another isolate that caused root and hypocotyl rots was thiamine auxotrophic, grew at 35 °C, and belonged to AG-2-2 IIIB. All 62 isolates that caused foliar blight belonged to AG-1 IA. RAPD analysis of R. solani AG-1 IA soybean isolates showed high genetic similarity to a tester strain of AG-1 IA, confirming their classification. The teleomorph of R. solani, Thanatephorus cucumeris was produced in vitro by one AG-1 IA isolate from soybean. The AG-4 and AG-2-2 IIIB isolates caused damping-off and root and hypocotyl rots of soybean seedlings cv. 'FT-Cristalina', under greenhouse conditions. The AG-2-2 IIIB isolate caused large lesions on the cortex tissue, that was distinct from the symptoms caused by AG-4 isolates. The AG-1 IA isolates caused foliar blight in adult soybean plants cv. 'Xingu' under the greenhouse and also in a detached-leaf assay.
Resumo:
The germinative capacity of spores of Fusarium was studied in the presence of copahiba balsam (5 to 100%). The culture was carried out in Erlenmeyer flasks with 50ml of ICI medium and 1 ml of the pre-inoculated fungus. In some specific cases, 1 ml of copahiba balsam was added to the medium. The development of spores was significantly reduced in the presence of copahiba balsam. Sensibility to copahiba balsam varied with the different strains of Fusarium.
Resumo:
The relative contribution of migration of Rhizoctonia solani anastomosis group 3 (AG-3) on infested potato seed tubers originating from production areas in Canada, Maine, and Wisconsin (source population) to the genetic diversity and structure of populations of R. solani AG-3 in North Carolina (NC) soil (recipient population) was examined. The frequency of alleles detected by multilocus polymerase chain reaction-restriction fragment length polymorphisms, heterozygosity at individual loci, and gametic phase disequilibrium between all pairs of loci were determined for subpopulations of R. solani AG-3 from eight sources of potato seed tubers and from five soils in NC. Analysis of molecular variation revealed little variation between seed source and NC recipient soil populations or between subpopulations within each region. Analysis of population data with a Bayesian-based statistical method previously developed for detecting migration in human populations suggested that six multilocus genotypes from the NC soil population had a statistically significant probability of being migrants from the northern source population. The one-way (unidirectional) migration of genotypes of R. solani AG-3 into NC on infested potato seed tubers from Canada, Maine, and Wisconsin provides a plausible explanation for the lack of genetic subdivision (differentiation) between populations of the pathogen in NC soils or between the northern source and the NC recipient soil populations.
Resumo:
The mango malformation, caused by the fungus Fusarium subglutinans Wollenweb & Reinking, is probably one of the diseases that causes more damages in the mangoes production in Brazil and other producing countries. This fungus was isolated of a Tommy Atkins plant with advanced symptoms of malformation, purified and prepared to be inoculated in 15 cultivars of national and imported mangoes. Initially, 10 cultivars had been inoculated in July/2000: Bourbon IAC - 100, Coração de Boi, Keitt, Parvin, Primor de Amoreira, Sensation, Smith, Surpresa, Tommy Atkins and Van Dyke. Another group was inoculated in December/2000, on the cultivars: Adams, Bhadauran, Palmer, Princesa and Zill, and with others cultivars Primor de Amoreira, Sensation and Tommy Atkins, that were inoculated in the first time, with the purpose to compare the two times of inoculation. Throughout the evaluated data at the two times of inoculation, after 11 months of evaluation, were maden the analysis of the variance in function of the involved sources of variation and the test of Duncan to compare the averages of inoculated cultivars. With the results obtained, the cultivars Bhadauran, Palmer, Parvin, Sensation, Van Dyke and Zill presents less percentage of plants with malformation symptoms or less progression of symptoms in relation to the others inoculated cultivars, under protected environmental conditions, where the assays were carried out.
Resumo:
Rhizoctonia solani isolates collected from different crops in northeast India belonged to anastomosis group AG 2-2 IIIB (Canavalia ensiformis, Sechium edule, Glycine max and Dolichos lablab). AG 11A was detected on Zea mays, Rhizoctonia solani on Sechium edule and AG 4HG-II on a weed, Galinsoga parviflora, which are new records from India. © Australasian Plant thology ociety 2010.
Resumo:
Stem canker and black scurf diseases of potatoes are caused by the basidiomycetous fungus Tanatephorus cucumeris (ana-morphic species complex Rhizoctonia solani). Tese diseases have worldwide distribution wherever potato is grown but their etiology varies depending on the predominance of distinct R. solani anastomosis groups (AGs) in a particular area. Within the species complex, several AGs have been associated with stem canker or black scurf diseases, including AG-1, AG-2-1, AG-2-2, AG-3, AG-4, AG-5 and AG-9. Tis article reports on the most comprehensive population-based study, providing evidence on the distribution of R. solani AGs in Colombian potato fields. A total of 433 isolates were sampled from the main potato cropping areas in Colombia from 2005 to 2009. Isolates were assigned to AGs by conventional PCR assays using specific primers for AG-3, sequencing of the ITS-rDNA and hyphal interactions. Most of the isolates evaluated were assigned to AG-3PT (88.45%), and a few to AG-2-1 (2.54%). Te remaining isolates were binucleate Rhizoctonia (AG-A, E, and I). Pathogenicity tests on the stems and roots of different plant species, including the potato, showed that AG-3PT affects the stems of solanaceous plants. In other plant species, damage was severe in the roots, but not the stems. AG-2-1 caused stem canker of Solanum tuberosum cv. Capiro and in R. raphanistrum and B. campestris subsp. Rapa plantlets and root rot in other plants. Te results of our study indicated that R. solani AG-3PT was the principal pathogen associated with potato stem canker and black scurf diseases of potatoes in Colombia.
Resumo:
The fungus Rhizoctonia solani AG-1 IA causes sheath blight, one of the most important rice diseases worldwide. The first objective of this study was to analyse the genetic structure of R. solani AG-1 IA populations from three locations in the Iranian Caspian Sea rice agroecosystem. Three population samples of R. solani AG-1 IA isolates were obtained in 2006 from infected rice fields separated by 126-263km. Each field was sampled twice during the season: at the early booting stage and 45days later at the early mature grain stage. The genetic structure of these three populations was analysed using nine microsatellite loci. While the population genetic structure from Tonekabon and Amol indicated high gene flow, they were both differentiated from Rasht. The high gene flow between Tonekabon and Amol was probably due mainly to human-mediated movement of infested seeds. The second objective was to determine the importance of recombination. All three populations exhibited a mixed reproductive mode, including both sexual and asexual reproduction. No inbreeding was detected, suggesting that the pathogen is random mating. The third objective was to determine if genetic structure within a field changes over the course of a growing season. A decrease in the proportion of admixed genotypes from the early to the late season was detected. There was also a significant (P=0·002) increase in the proportion of loci under Hardy-Weinberg equilibrium. These two lines of evidence support the hypothesis that basidiospores can be a source of secondary inoculum. © 2012 BSPP.
Resumo:
The soilborne fungus Rhizoctonia solani anastomosis group 3 (AG-3PT) is a globally important potato pathogen. However, little is known about the population genetic processes affecting field populations of R. solani AG-3PT, especially in the South American Colombian Andes, which is near the center of diversity of the two most common groups of cultivated potato, Solanum tuberosum and S. phureja. We analyzed the genetic structure of 15 populations of R. solani AG-3PT infecting potato in Colombia using 11 simple-sequence repeat (SSR) markers. In total, 288 different multilocus genotypes were identified among 349 fungal isolates. Clonal fractions within field populations were 7 to 33%. R ST statistics indicated a very low level of population differentiation overall, consistent with high contemporary gene flow, though moderate differentiation was found for the most distant southern populations. Genotype flow was also detected, with the most common genotype found widely distributed among field populations. All populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction, but two populations displayed evidence of inbreeding. © 2013 The American Phytopathological Society.
Resumo:
Fungi constitute an important part of the soil ecosystem, playing key roles in decomposition, cycling processes, and biotic interactions. Molecular methods have been used to assess fungal communities giving a more realistic view of their diversity. For this purpose, total DNA was extracted from bulk soils cultivated with tomato (STC), vegetables (SHC), and native forest (SMS) from three sites of the Taquara Branca river basin in Sumaré County, São Paulo State, Brazil. This metagenomic DNA was used as a template to amplify fungal 18S rDNA sequences, and libraries were constructed in Escherichia coli by cloning PCR products. The plasmid inserts were sequenced and compared to known rDNA sequences in the GenBank database. Of the sequenced clones, 22 were obtained from the SMS sample, 18 from the SHC sample, and 6 from the STC sample. Although most of the clone sequences did not match the sequences present in the database, individual amplified sequences matched with Glomeromycota (SMS), Fungi incertae sedis (SMS), and Neocallimastigomycota (SHC). Most of the sequences from the amplified taxa represent uncultured fungi. The molecular analysis of variance (AMOVA) indicated that fluctuations observed of haplotypes in the composition may be related to herbicide application. © 2013 Silvana Pompéia Val-Moraes et al.
Resumo:
Microbial enzymes have been used for various biotechnological applications; however, enzyme stabilization remains a challenge for industries and needs to be considered. This study describes the effects of spray-drying conditions on the activity and stability of β-fructofuranosidase from Fusarium graminearum. The extracellular enzyme β-fructofuranosidase was spray dried in the presence of stabilizers, including starch (Capsul) (SC), microcrystalline cellulose (MC), trehalose (TR), lactose (LC) and β-cyclodextrin (CD). In the presence of TR (2% w/v), the enzymatic activity was fully retained. After 1 year of storage, 74% of the enzymatic activity was maintained with the CD stabilizer (10% w/v). The residual activity was maintained as high as 80% for 1 h at 70°C when MC, SC and CD (5% w/v) stabilizers were used. Spray drying with carbohydrates was effective in stabilizing the F. graminearum β-fructofuranosidase, improved enzymatic properties compared to the soluble enzyme and demonstrated a potential use in future biotechnology applications. © 2013 Informa UK Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC