84 resultados para Fractional Derivatives and Integrals
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biometria - IBB
Resumo:
The present invention relates to phthalimide derivatives of non-steroidal and/or TNF-+- modulating anti-inflammatory compounds as well as the process of obtaining the so-called derivatives, pharmaceutical compositions containing such derivatives and their uses, including use in the treatment of inflammatory diseases, especially those related to chronic inflammatory processes, such as rheumatoid arthritis and intestinal inflammatory diseases (for instance, Chron's disease) and the use of the referred to pharmaceutical compositions as antipyretic, analgesic and platelet antiaggregating medications.
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
This paper proposes a Fuzzy Goal Programming model (FGP) for a real aggregate production-planning problem. To do so, an application was made in a Brazilian Sugar and Ethanol Milling Company. The FGP Model depicts the comprehensive production process of sugar, ethanol, molasses and derivatives, and considers the uncertainties involved in ethanol and sugar production. Decision-makings, related to the agricultural and logistics phases, were considered on a weekly-basis planning horizon to include the whole harvesting season and the periods between harvests. The research has provided interesting results about decisions in the agricultural stages of cutting, loading and transportation to sugarcane suppliers and, especially, in milling decisions, whose choice of production process includes storage and logistics distribution. (C)2014 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
The albendazole and mebendazole drugs are benzimidazole derivatives and belong to the anthelmintic class. These drugs are particularly recommended for the treatment against worms present in the gastrointestinal tract of animals and humans, by acting directly on the worm metabolism. The need for thermally study drugs is related to all the parameters that these analyzes include: presence or absence of polymorphs, possible changes in the crystallinity of the drugs, as well as the quality control during the manufacturing process thereof. In this study the thermal behavior of anthelmintic albendazole and commercial mebendazole and its recrystallisation in organic solvents, such as acetic acid and formic acid in dimethylformamide to mebendazole, and albendazole were studied using TG-DSC techniques, TG-FTIR, FTIR and XRD. TG-DSC techniques were used so it could collect information about the thermal stability of the compounds steps for thermal decomposition process and also prove its melting temperature. For recrystallization of drugs in organic solvents, the TG-DSC curves were analyzed to compare and determine that the occurrence of polymorphs. The coupled TG-FTIR technique allowed the analysis of volatile products which were released during the thermal decomposition of the commercial mebendazole. The absorption spectroscopy in the infrared region was performed to mebendazole, and albendazole in order to show the difference in functional groups of both, comparing the spectra with commercial drugs and see if there was recrystallized changes in the absorption band where the drug was recrystallized or when heated. The diffraction technique by powder X-ray method was used for comparison of the crystal structures of commercial drugs and recrystallization in organic solvents to identify changes in crystallinity both, which might suggest the formation of polymorphs
Resumo:
The purpose of this work was the study of numerical methods for differential equations of fractional order and ordinary. These methods were applied to the problem of calculating the distribution of the concentration of a given substance over time in a given physical system. The two compartment model was used for representation of this system. Comparison between numerical solutions obtained were performed and, in particular, also compared with the analytical solution of this problem. Finally, estimates for the error between the solutions were calculated