118 resultados para Fishes Physiology
Resumo:
The determination of the diet and feeding habits is one of the principal aspects of the study on fish biology, as feeding is a basic process and its study is necessary for the understanding of the populations' dynamic and ecology. The Sciaenidae family has a significant occurrence in the bay's demersal ichthyofauna, constituting an important fishing resource. The goal of this work was to analyze how the partitioning of available food resources takes place among the ten sciaenid species which live in the Flamengo Bay. One single survey, consisting of three trawls, was carried out with a fishing boat equipped with two otter-trawl. Diet analysis showed that all species are exclusively carnivore, using several items as food, but crustaceans are the main food ingested. The use of the ''Proportional Overlap Index'' showed possible overlapping between six couples of species but in the majority of cases, morphologic differences between these species, such as the mouth position, probably determine different foraging strategies.
Resumo:
Four fish species of the family Pimelodidae were analyzed. Bergiaria westermani and two different Pimelodus species have the same diploid chromosome number (2n - 56). Despite some differences in chromosome structure, these species are highly similar in karyotype and differ from Pimelodella sp., which presents a reduction in chromosome number to 2n = 46. The data confirm the extensive chromosome variability existing in this family, characterized by intraindividual and/or population polymorphisms of a structural nature which may or may not be sexlinked, and by the presence of supernumerary chromosomes.
Resumo:
There are few reports on the genomic organization of 5S rDNA in fish species. To characterize the 5S rDNA nucleotide sequence and chromosomal localization in the Neotropical fishes of the genus Brycon, 5S rDNA copies from seven species were generated by PCR. The nucleotide sequences of the coding region (5S rRNA gene) and the nontranscribed spacer (NTS) were determined, revealing that the 5S rRNA genes were highly conserved, while the NTSs were widely variable among the species analyzed. Moreover, two classes of NTS were detected in each species, characterized by base substitutions and insertions-deletions. Using fluorescence in situ hybridization (FISH), two 5S rDNA chromosome loci that could be related to the two 5S rDNA NTS classes were observed in at least one of the species studied. 5S rDNA sequencing and chromosomal localization permitted the characterization of Brycon spp. and suggest a higher similarity among some of them. The data obtained indicate that the 5S rDNA can be an useful genetic marker for species identification and evolutionary studies.
Resumo:
Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide 0 side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organism's complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.
Resumo:
Fruit-eating by fishes represents an ancient (perhaps Paleozoic) interaction increasingly regarded as important for seed dispersal (ichthyochory) in tropical and temperate ecosystems. Most of the more than 275 known frugivorous species belong to the mainly Neotropical Characiformes (pacus, piranhas) and Siluriformes (catfishes), but cypriniforms (carps, minnows) are more important in the Holarctic and Indomalayan regions. Frugivores are among the most abundant fishes in Neotropical floodplains where they eat the fruits of a wide variety of trees and shrubs. By consuming fruits, fishes gain access to rich sources of carbohydrates, lipids and proteins and act as either seed predators or seed dispersers. With their often high mobility, large size, and great longevity, fruit-eating fishes can play important roles as seed dispersers and exert strong influences on local plant-recruitment dynamics and regional biodiversity. Recent feeding experiments focused on seed traits after gut passage support the idea that fishes are major seed dispersers in floodplain and riparian forests. Overfishing, damming, deforestation and logging potentially diminish ichthyochory and require immediate attention to ameliorate their effects. Much exciting work remains in terms of fish and plant adaptations to ichthyochory, dispersal regimes involving fishes in different ecosystems, and increased use of nondestructive methods such as stomach lavage, stable isotopes, genetic analyses and radio transmitters to determine fish diets and movements. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The present paper reports nuclear DNA content in 30 Neotropical freshwater fish species and summarizes the data on other Neotropical species presented in the literature. Among Neotropical fishes, the nuclear DNA content ranges from 1.04 ± 0.09 pg/nucleus in Corydoras cf. simulatus (2n = 62) to 248.0 pg/nucleus in Lepidosiren paradoxa (2n = 38). A general analysis of the data obtained in the present study for each species showed that DNA measurements were practically constant at the individual level, while significant differences were observed among individuals of the same population. This observation was valid for all species analyzed and was more evident in those species that presented other karyotypic particularities such as sex chromosomes or supernumerary chromosomes. The importance of changes in nuclear DNA content in the evolutionary process of Neotropical fishes is discussed.
Resumo:
Growth, reproduction and biochemical composition were analyzed for the copepod Argyrodiaptomus furcatus fed on the alga Ankistrodesmus gracilis grown in different media. The ingestion of this copepod by larvae of two species of tropical fishes was also evaluated. The mean peak density of the copepod population was 1369 individuals 1-1 for all four diets used, and the highest was 1387 individuals 1-1 on diet ARV (algae + ration + vitamins). A small copepod, A. furcatus tends to have a short life span. The smallest females did not attain maturity in the shortest time on all diets used. Food quality may play a major role in the dynamics of the biochemical composition of this copepod. Argyrodiaptomus furcatus was a more important food item for larvae of tambaqui (Colossoma macropomum) than of pacu (Piaractus mesopotamicus). However, it made up a large part of the gut contents of larvae of both species.
Resumo:
The seminiferous tubules of Prochilodus scrofa present a coiled morphological arrangement with intertubular anastomoses and unrestricted spermatogonial distribution. The structural pattern of the seminiferous tubules is cystic, with cysts formed by cytoplasmic prolongations of Sertoli cells. Inside the cysts are observed different types of germ cells. The seminiferous tubules open individually on the ventral surface of the main testicular duct present in each testis. Each main testicular duct prolongs as a spermatic duct, fusing with the spermatic duct of the opposite side to form the common spermatic duct which opens into the urogenital papilla. The mature sperm cysts break and extravasate their content into the lumen of the seminiferous tubules from which the seminal fluid and the spermatozoa penetrate the main testicular duct, the spermatic duct and the common spermatic duct for semen ejaculation.
Resumo:
Oocyte secondary growth in S. spiloleura corresponds to the period in which different vesicular structures are formed, including the cortical alveoli and the yolk granules. The oocytes with cortical alveolus formation show vesicular structures with filamentous content in the cortical cytoplasmic region, which are the cortical alveolus precursors. In these oocytes, electron-dense vesicles of heterogenous content are dispersed in the inner cytoplasmic region and their nuclei are irregular, showing many nucleoli of different sizes. The oocytes in vitellogenesis are filled with many vesicles. The cortical alveolus precursors are in the peripheral region, and electron-dense granules are seen near to the nucleus. These fuse and form yolk granules. The oocytes in vitellogenesis show a very irregular nucleus that has nucleoli of different sizes. In the oocytes in final vitellogenesis, the yolk granules are scattered throughout the cytoplasm, displacing the cortical alveoli toward cell periphery. The nucleus is similar to the other stages.
Resumo:
The localization of peroxidase activity in different cell regions is used as a criterion for classifying the stage of maturity of mammalian mononuclear phagocytes, with a positive peroxidase reaction indicating the presence of monoblasts, promonocytes, monocytes, and macrophages. Peroxidase activity was observed ultrastructurally in the circulating blood of pacu fish (Piaractus mesopotamicus), identifying monoblasts, promonocytes, monocytes, and macrophages. These observations suggest that differentiation of mononuclear phagocytes occurs in the blood circulation of fish, whereas in mammals, monoblasts and promonocytes are detected in bone marrow, with only monocytes detected in circulating blood and differentiation into macrophages occurring in other body compartments.