108 resultados para Fertility of soil
Resumo:
The aim of this work was to observe the interaction between soil moisture and irrigation time intervals on the germination of sugarcane cv. RB785148 sets in semi-controlled conditions. One-bud sets of the variety RB785148 were germinated in ceramic pots filled with soil under a transparent PVC cover using soil humidity levels of 22, 25 and 30%, that were restored at intervals of 7, 14 and 21 days. The experiment was carried out at three different periods of the year: May-June/94; Oct.-Nov./94; and Mar.-Apr./95. The results indicate that the germination decreased mainly in function of the decrease in soil humidity, whereas irrigation interval have no statistical effect on germination. An interaction between humidity level and irrigation interval was observed. A variation of the timecourse of the germination could be observed when the results of the experiments installed at different dates were compared.
Resumo:
In the study of physical, chemical, and mineralogical data related to the weathering of soils and the quantification of their properties, remote sensing constitutes an important technique that, in addition to conventional analyses, can contribute to soil survey. The objectives of this research were to characterize and differentiate soils developed from basaltic rocks that occur in the Parana state, Brazil and to quantify soil properties based on their spectral reflectance. These observations were used to verify the relationship between the soils and reflectance with regard to weathering, organic matter (OM), and forms of Fe. From the least to the most weathered soil, we used a Typic Argiudoll (Reddish Brunizem), Rhodudalf (Terra Roxa Estruturada), and Rhodic Hapludox (Very Dark Red Latosol). The spectral reflectances between 400 and 2500 nm were obtained in the laboratory from soil samples collected at two depth increments, 0- to 20- and 40- to 60-cm, using an Infra Red Intelligent Spectroradiometer (IRIS). Correlation, regression, and discriminant estimates were used in analyzing the soil and spectral data. Results of this study indicated that soils could be separated at the soil-type level based on reflectance intensity in various absorption bands. Soil collected in the 40- to 60-cm depth appeared to have higher reflectance intensities than those from the 0- to 20-cm depth. Removal of OM from soil samples promoted higher reflectance intensity in the entire spectrum. Amorphous and crystalline Fe influenced reflectance differently. Weathering of basaltic soils was correlated with alterations in the reflectance intensities and absorption features of the spectral curves. Multivariate analysis demonstrated that this technique was efficient in the estimation of clay, silt, kaolinite, crystalline Fe, amorphous Fe, and Mg through the use of reflected energy of the soils.
Resumo:
Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.
Root volume and dry matter of peanut plants as a function of soil bulk density and soil water stress
Resumo:
Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.
Resumo:
Soil and subsoil pollution is not only significant in terms of environmental loss, but also a matter of environmental and public health. Solid, liquid and gaseous residues are the major soil contamination agents. They originate from urban conglomerates and industrial areas in which it is impossible to emphasize the chemical, petrochemical and textile industry; thermoelectric, mining, and ironmaster activities. The contamination process can thus be defined as a compound addition to soil, from what qualitative and or quantitative manners can modify soil's natural characteristics and use, producing baneful and deteriorative effects on human health. Studies have shown that human exposition to high concentration of some heavy metals found on soil can cause serious health problems, such as pulmonary or kidney complications, liver and nervous system harm, allergy, and the chronic exposition that leads to death. The present study searches for the correlation among soil contamination, done through a geochemical baseline survey of an industrial contamination area on the shoreline of Sao Paulo state. The study will be conducted by spatial analysis using Geographical Information Systems for mapping and regression analysis. The used data are 123 soil samples of percentage concentration of heavy metals. They were sampled and spatially distributed by geostatistics methods. To verify if there is a relation between heavy metals soil pollution and morbidity an executed correlation and regression analysis will be done using the pollution registers as the independent variables and morbidity as dependable variables. It is expected, by the end of the study, to identify the areas relation between heavy metals soil pollution and morbidity, moreover to be able to provide assistance in terms of new methodologies that could facilitate soil pollution control programs and public health planning. © 2010 WIT Press.
Resumo:
Soil-transmitted helminths (STHs) form one of the most important groups of infectious agents and are the cause of serious global health problems. The most important STHs are roundworms (Ascaris lumbricoides), whipworms (Trichuris trichiura) and hookworms (Necator americanus or Ancylostoma duodenale); on a global level, more than a billion people have been infected by at least one species of this group of pathogens. This review explores the general concepts of transmission dynamics and the environment and intensity of infection and morbidity of STHs. The global strategy for the control of soil-transmitted helminthiasis is based on (i) regular anthelminthic treatment, (ii) health education, (iii) sanitation and personal hygiene and (iv) other means of prevention with vaccines and remote sensoring. The reasons for the development of a control strategy based on population intervention rather than on individual treatment are discussed, as well as the costs of the prevention of STHs, although these cannot always be calculated because interventions in health education are difficult to measure. An efficient sanitation infrastructure can reduce the morbidity of STHs and eliminates the underlying cause of most poverty-related diseases and thus supports the economic development of a country.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The fragmentation of forest habitats in urban areas has aroused increasing interest in recent years according to the growing environmental problems. The fragmentation of theses ecosystems is caused, in general, by the pressure of housing, agriculture and industry, causing losses in biodiversity and problems of soil degradation in the border areas of theses remnants. The establishment of indicators of soil degradation becomes essential for the implementation of conservation and reclamation. This study analyzes physical and chemical characteristics of soil under different forms of vegetation in the forest surrounding the Quilombo Forest, located in Campinas/SP - Brazil, and examines the possibility of using these indices as indicators of environmental degradation in urban remnants. The parameters analyzed were: specific weight natural (γn), specific weight of solids (γs) Ca, P, K, Mg, pH, organic matter, H + Al, Sum of Base (SB) Percent Base Saturation (V%), Cation Exchange Capacity (CEC). The study shows that in general the different forms of land used in the study area significantly changed (or according to) the physical aspects of soil The porosity and voids of the soil stood out as the best indicators of soil physical degradation in the layer 0-20 cm deep. In relation to chemical indices, the soil under the cultivation of cane sugar had a significantly higher pH, K, Ca, Mg and sum of bases. The areas of forest showed higher levels of phosphorus, organic matter and CEC, indicating the importance of maintaining vegetation and replacement for the cycling of organic matter.
Resumo:
Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.
Resumo:
Silicon can alleviate biotic and abiotic stresses in several crops, and it has beneficial effects on plants under nonstressed conditions. However, there is still doubt about foliar-applied Si efficiency and Si effects on mineral nutrition, physiological processes, and growth of potato (Solanum tuberosum L.) plants under wellwatered conditions. The objective of this study was to evaluate the effect of soil and foliar application of soluble Si on Si accumulation, nutrients, and pigments concentration as well as gas exchange and growth of potato plants. The experiment was conducted under greenhouse conditions in pots containing 35 dm3 of a Typic Acrortox soil. The treatments consisted of a control (no Si application), soil application of soluble Si (50 mg dm-3 Si), and foliar application of soluble Si (three sprays of 1.425 mM Si water solution, prepared with a soluble concentrate stabilized silicic acid), with eight replications. Both soil and foliar application of Si resulted in higher Si accumulation in the whole plant. Foliar application of Si resulted in the greatest Si concentration in leaves, and soil application increased Si concentration in leaves, stems, and roots. Silicon application, regardless of the application method, increased leaf area, specific leaf area, and pigment concentration (chlorophyll a and carotenoids) as well as photosynthesis and transpiration rates of wellwatered potato plants. However, only soil application increased P concentration in leaves and dry weight of leaves and stems. © Crop Science Society of America.
Resumo:
This study aimed to investigate the potential use of magnetic susceptibility (MS) as pedotransfer function to predict soil attributes under two sugarcane harvesting management systems. For each area of 1 ha (one with green sugarcane mechanized harvesting and other one with burnt sugarcane manual harvesting), 126 soil samples were collected and subjected to laboratory analysis to determine soil physical, chemical and mineralogical attributes and for measuring of MS. Data were submitted to descriptive statistics by calculating the mean and coefficient of variation. In order to compare the means in the different harvesting management systems it was carried out the Tukey test at a significance level of 5%. In order to investigate the correlation of the MS with other soil properties it was made the correlation test and aiming to assess how the MS contributes to the prediction of soil complex attributes it was made the multiple linear regressions. The results demonstrate that MS showed, in both sugarcane harvesting management systems, statistical correlation with chemical, physical and mineralogical soil attributes and it also showed potential to be used as pedotransfer function to predict attributes of the studied oxisol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)