69 resultados para FIELD SOIL
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Inorganic phosphorus (Pi) usually controls the P availability in tropical soils, but the contribution of organic P (Po) should not be neglected, mainly in systems with low P input or management systems that promote organic matter accumulation. The aims of this study were to evaluate the changes in the Po fractions over time in soil fertilized and not fertilized with cattle manure and to correlate Po forms with available P extracted by anion exchange resin. The experiment was carried out under field conditions, in a sandy-clay loam Haplustox. The experimental design was a 2 x 9 randomized complete block factorial design, in which the first factor was manure application (20 t ha(-1)) or absence, and the second the soil sampling times (3, 7, 14, 21, 28, 49, 70, 91, and 112 days) after manure incorporation. Labile, moderately labile and non-labile Po fractions were determined in the soil material of each sampling. Manure fertilization increased the Po levels in the moderately labile and non-labile fractions and the total organic P, but did not affect the Po fraction proportions in relation to total organic P. On average, 5.1 % of total Po was in the labile, 44.4 % in the moderately labile and 50.5 % in the non-labile fractions. Available P (resin P) was more affected by the manure soluble Pi rather than by the labile Po forms. The labile and non-labile Po fractions varied randomly with no defined trend in relation to the samplings; for this reason, the data did not fit any mathematical model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.
Resumo:
The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations for every type of soils were evaluated. Both were placed at the Agronomy University (Faculdade de Ciências Agronômicas) in São Manuel, State of São Paulo, Brazil. The floodplain soil was vegetated with Southern Cattail (Typha domingensis). In both places, soil samples were collected from several depths: 0, 30, 60 and 100 cm. Results show that lower soil density values (0.15 g/cm3) with organic texture and high porosities values (up to 86.2%) were found in samples with the highest organic material content in the floodplain soil. For this field experiment, flood plains soils (characterised as basin gley soils) presented high volumetric instability with a retratibility of 67.49% and higher water storage capacities compared to riparian stands soils (characterised as fluvic neosoils).