66 resultados para Experimental Analysis
Resumo:
Esse estudo descreve o desenvolvimento e otimização de um método de extração em fase solida (SPE) para análise dos filtros ultravioletas (UV): benzofenona-3 (BP-3), etilhexil salicilato (ES), etilhexil metoxinamato (EHMC) e octocrileno (OC) em matrizes ambientais. Um planejamento fatorial fracionário (PFF) 25-1 foi empregado na avaliação das variáveis significativas do método de extração. As condições experimentais otimizadas da avaliação estatística foram: capacidade do cartucho de 500 mL, eluente acetato de etila, metanol como solvente de lavagem (10% em água, v/v) and volume do eluente de 3 × 2 mL e pH 3. Os parâmetros analíticos avaliados foram satisfatõrios, apresentando linearidade de 100 a 4000 ng L -1, recuperaç ões para os quatro níveis de fortificação (Limite de Quantificação do Método, 200, 1000 e 2000 ng L-1) entre 62 e 107% com desvio padrão relativo menor que 14%. Os limites de quantificação foram encontrados na faixa de ng L-1, variando entre 10 e 100 ng L-1. O método proposto foi aplicado para a determinação dos quatro filtros UV em amostras de águas naturais. This study describes the development and optimization of a solid-phase extraction (SPE) method for analysis of ultraviolet (UV) filters, benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate (ES) and octocrylene (OC), in environmental matrices. A 25-1 fractional factorial design (FFD) was used to evaluate the significant variables for the extraction method. The optimized experimental conditions determined from the statistical evaluation were: breakthrough volume of 500 mL, eluent of ethyl acetate, wash solvent of methanol (10% in water, v/v), eluent volume of 3 × 2 mL and pH 3. The evaluated analytical parameters were satisfactory for the analytes and showed linearity between 100 and 4000 ng L-1, recoveries for four fortification levels (Method Quantification Limit, 200, 1000 and 2000 ng L-1) were between 62 and 107% with relative standard deviations less than 14%. Limits of quantification were in the ng L-1 range and were between 10 and 100 ng L-1. The proposed method was used to analyze four UV filters in natural water samples. ©2013 Sociedade Brasileira de Química.
Resumo:
The success of manufacturing composite parts by liquid composite molding processes with RTM depends on tool designs, efficient heat system, a controlled injection pressure, a stabilized vacuum system, besides of a suitable study of the preform lay-up and the resin system choice. This paper reports how to assemble a RTM system in a laboratory scale by specifying heat, injection and vacuum system. The design and mold material were outlined by pointing out its advantages and disadvantages. Four different carbon fiber fabrics were used for testing the RTM system. The injection pressure was analyzed regarding fiber volume content, preform compression and permeability, showing how these factors can affect the process parameters. The glass transition temperature (Tg) around 203 ºC matched with the aimed temperature of the mold which ensured good distribution of the heat throughout the upper and lower mold length. The void volume fraction in a range of 2% confirmed the appropriate RTM system and parameters choice.
Resumo:
This work reports the study of an attractive interfacial wave for application in ultrasonic NDE techniques for inspection and fluid characterization. This wave, called quasi-Scholte mode, is a kind of flexural wave in a plate in contact with a fluid which presents a good sensitivity to the fluid properties. In order to explore this feature, the phase velocity curve of quasi-Scholte mode is experimentally measured in a plate in contact with a viscous fluid, showing a good agreement with theory.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background Several researchers seek methods for the selection of homogeneous groups of animals in experimental studies, a fact justified because homogeneity is an indispensable prerequisite for casualization of treatments. The lack of robust methods that comply with statistical and biological principles is the reason why researchers use empirical or subjective methods, influencing their results. Objective To develop a multivariate statistical model for the selection of a homogeneous group of animals for experimental research and to elaborate a computational package to use it. Methods The set of echocardiographic data of 115 male Wistar rats with supravalvular aortic stenosis (AoS) was used as an example of model development. Initially, the data were standardized, and became dimensionless. Then, the variance matrix of the set was submitted to principal components analysis (PCA), aiming at reducing the parametric space and at retaining the relevant variability. That technique established a new Cartesian system into which the animals were allocated, and finally the confidence region (ellipsoid) was built for the profile of the animals’ homogeneous responses. The animals located inside the ellipsoid were considered as belonging to the homogeneous batch; those outside the ellipsoid were considered spurious. Results The PCA established eight descriptive axes that represented the accumulated variance of the data set in 88.71%. The allocation of the animals in the new system and the construction of the confidence region revealed six spurious animals as compared to the homogeneous batch of 109 animals. Conclusion The biometric criterion presented proved to be effective, because it considers the animal as a whole, analyzing jointly all parameters measured, in addition to having a small discard rate.