155 resultados para Equations of Mathematical Physics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variational analysis of the spiked harmonic oscillator Hamiltonian operator - d2/dx2 + x2 + l(l + 1)/x2 + λ|x| -α, where α is a real positive parameter, is reported in this work. The formalism makes use of the functional space spanned by the solutions of the Schrödinger equation for the linear harmonic oscillator Hamiltonian supplemented by a Dirichlet boundary condition, and a standard procedure for diagonalizing symmetric matrices. The eigenvalues obtained by increasing the dimension of the basis set provide accurate approximations for the ground state energy of the model system, valid for positive and relatively large values of the coupling parameter λ. Additionally, a large coupling perturbative expansion is carried out and the contributions up to fourth-order to the ground state energy are explicitly evaluated. Numerical results are compared for the special case α = 5/2. © 1989 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of light-cone integrals typical to one-loop calculations in the two-component formalism is considered. For the particular cases considered, convergence is verified though the results cannot be expressed as a finite sum of elementary functions. © 1988 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A system of coupled evolution equations for the bulk velocity and the surface displacement is found to govern the long-wavelength perturbations in a Benard-Marangoni system. This system of equations, involving nonlinearity, dispersion, and dissipation, is a generalization of the usual Boussinesq system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Yang-Mills equations only admit a Lagrangian for gauge groups which are either semisimple or Abelian, or a direct product of groups of both kinds. © 1988.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strict proof of the equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon Fock theories is presented for physical S-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin - Kemmer Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the S-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deformation parameter of a bihamiltonian structure of hydrodynamic type is shown to parametrize different extensions of the AKNS hierarchy to include negative flows. This construction establishes a purely algebraic link between, on the one hand, two realizations of the first negative flow of the AKNS model and, on the other, two-component generalizations of Camassa-Holmand Dym-type equations. The two-component generalizations of Camassa-Holm- and Dym-type equations can be obtained from the negative-order Hamiltonians constructed from the Lenard relations recursively applied on the Casimir of the first Poisson bracket of hydrodynamic type. The positive-order Hamiltonians, which follow froth the Lenard scheme applied on the Casimir of the second Poisson bracket of hydrodynamic type, are shown to coincide with the Hamiltonians of the AKNS model. The AKNS Hamiltonians give rise to charges conserved with respect to equations of motion of two-component Camassa-Holm- and two-component Dym-type equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We associate to an arbitrary Z-gradation of the Lie algebra of a Lie group a system of Riccati-type first order differential equations. The particular cases under consideration are the ordinary Riccati and the matrix Riccati equations. The multidimensional extension of these equations is given. The generalisation of the associated Redheffer-Reid differential systems appears in a natural way. The connection between the Toda systems and the Riccati-type equations in lower and higher dimensions is established. Within this context the integrability problem for those equations is studied. As an illustration, some examples of the integrable multidimensional Riccati-type equations related to the maximally nonabelian Toda systems are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the Hamilton-Jacobi formulation for higher-order singular systems and obtain the equations of motion as total differential equations. To do this we first study the constraints structure present in such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)