75 resultados para Energy process
Resumo:
This paper proposes a response surface methodology to evaluate the influence of the particle size and temperature as variables and their interaction on the sulfation process using two Brazilian limestones, a calcite (ICB) and a dolomite (DP). Experiments were performed according to an experimental design [central composite rotatable design (CCRD)] carried out on a thermogravimetric balance and a nitrogen adsorption porosimeter. In the SO 2 sorption process, DP was shown to be more efficient than ICB. The best results for both limestones in relation to conversion and Brunauer-Emmett-Teller (BET) surface area were obtained under central point conditions (545 μm and 850 C for DP and 274 μm and 815 C for ICB). The optimal values for conversion were 52% for DP and 37% for ICB. For BET surface area, the optimal values were 35 m2 g-1 for DP and 45 m2 g-1 for ICB. A relationship between conversion and pore size distribution has been established. The experiments that showed higher conversions also exhibited more pores in the region between 20 and 150 Å and larger BET surface area, indicating that the amount of smaller pores may be an important factor in the reactivity of limestones. © 2013 American Chemical Society.
Resumo:
Processes involving visible to infrared energy conversion are presented for Pr3+-Yb3+ co-doped fluoroindate glasses. The emission in the visible and infrared regions, the luminescence decay time of the Pr 3+:3P0 → 3H4 (482 nm), Pr3+:1D2 → 3H6 (800 nm), Yb3+:2F5/2 → 2F 7/2 (1044 nm) transitions and the photoluminescence excitation spectra were measured in Pr3+ samples and in Pr3+-Yb 3+ samples as a function of the Yb3+ concentration. In addition, energy transfer efficiencies were estimated from Pr3+: 3P0 and Pr3+:1D2 levels to Yb3+:2F7/2 level. Down-Conversion (DC) emission is observed due to a combination of two different processes: 1-a one-step cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) resulting in one photon emitted by Pr3+ (1G4 → 3H5) and one photon emitted by Yb3+ (2F7/2 → 2F5/2); 2-a resonant two-step first order energy transfer, where the first part of energy is transferred to Yb3+ neighbor through cross relaxation (Pr3+:3P0 → 1G4; Yb3+:2F7/2 → 2F5/2) followed by a second energy transfer step (Pr 3+:1G4 → 3H4; Yb3+:2F7/2 → 2F5/2). A third process leading to one IR photon emission to each visible photon absorbed involves cross relaxation energy transfer (Pr3+: 1D2 → 3F4; Yb 3+:2F7/2 → 2F5/2). © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To identify the critical success factors in the adoption of energy efficiency actions in Brazilian hospitals and describe their behaviour are the objectives of this paper. In order to achieve these goals, a literature review was performed on green management and energy efficiency. This was the basis to define the questions of the interview script applied to two hospitals located in the state of Sao Paulo, Brazil. The interview script application was complemented by secondary data and direct observation. The results showed that: a) the studied hospitals are embracing environmental management actions more often and, whenever possible, energy efficiency actions are taken as well; and b) in the cases analysed top management support, commitment with the environment, green process design and employee empowerment were some of the most relevant critical success factors to the accomplishment of energy efficiency actions. These findings may be of interest to emerging countries, including BRICS (Brazil, Russia, India, China and South Africa).
Resumo:
This paper presents an assessment of an educational game for teaching the efficient use of electricity. Developed with Adobe Flash (R), it is a virtual board game where participants choose a car that starts the path and reaches the same final goal, going through a number of track steps defined in terms of a dice that each player rolls in turn. The car moves if the participant is able to correctly answer a question that is randomly generated by the software. The objective of the game is to answer questions related to energy efficiency promoting a healthy and attractive learning process for participants on concepts related to energy efficiency such as: the rational use of energy, the basic concepts of forms of energy generation, among others. The main objective of this paper is to assess the impact of the application of this virtual game in the teaching and learning process of high school students. Therefore, the game was applied in the discipline of physics in a class of junior high public school in the state of Sao Paulo. Initially, the class that had 43 students was divided into 10 groups of 4 students, and 1 group of 3 students. Each student group competed with one another. The idea was that each of them should indicate a student who was the representative of this group until only 4 group leaders were selected for the finals. At this stage, each student could interact with a group of up to ten students that acted as advisers. The adopted assessment process is based on the model proposed by Savi [7]. Then, at the end of the game, the students answered a prepared questionnaire based on the model proposed by Savi. According to Savi, although there are significant studies that show the importance of educational games for the process of cognitive development and learning concepts of students, there are few papers that present forms of assessing the potential of these resources. Thus, the assessment criteria proposed by Savi are based on the model of training evaluation by Kirkpatrick [3], taken as a reference to measure the efficiency of processes of continuing education courses for professionals. The authors assert that the metric of the evaluation proposed to assess the game is based on the first level of the model proposed by Kirkpatrick.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to value the possibility to join, for pulsed Nd:YAG laser welding, thin foils lap joints for sealing components in corrosive environment. Experimental investigations were carried out using a pulsed neodymium: yttrium aluminum garnet laser weld to examine the influence of the pulse energy in the characteristics of the weld fillet. The pulse energy was varied from 1.0 to 2.5 J at increments of 0.25 J with a 4 ms pulse duration. The base materials used for this study were AISI 316L stainless steel and Ni-based alloys foils with 100 mu m thickness. The welds were analyzed by electronic and optical microscopy, tensile shear tests and micro hardness. The results indicate that pulse energy control is of considerable importance to thin foil weld quality because it can generate good mechanical properties and reduce discontinuities in weld joints. The ultimate tensile strength of the welded joints increased at first and then decreased as the pulse energy increased. In all the specimens, fracture occurred in the top foil heat-affected zone next to the fusion line. The microhardness was almost uniform across the parent metal, HAZ and weld metal. A slight increase in the fusion zone and heat-affected zone compared to those measured in the base metal was observed. This is related to the microstructural refinement in the fusion zone, induced by rapid cooling of the laser welding. The process appeared to be very sensitive to the gap between couples.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluate the potential for searching for isosinglet neutral heavy leptons (N), such as right-handed neutrinos, in the next generation of e+e- linear colliders, paying special attention to contributions from the reaction γe→WN initiated by photons from beamstrahlung and laser back-scattering. We find that these mechanisms are both competitive and complementary to the standard e+e-→vN annihilation process for producing neutral heavy leptons in these machines and greatly extends the search range over HERA and LEP200.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor–solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N2 atmosphere, at temperatures up to 900 °C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.