83 resultados para Embryonic vesicle
Resumo:
This study examines some aspects of the basic biology of the worldwide distributed ant Tapinoma melanocepbalum Fabricius. The number of larval instars and the growth ratio between each instar are given. We used colonies containing only queens and workers, and later removed these queens in order to estimate the production of eggs and the duration of immature development of the worker caste. Measurements of larvae cephalic capsule widths revealed that workers of the ghost-ant have four larval instars from egg-hatching to adult. The mean growth rate for the species is 1.38, in accordance with Dyar's rule. The highest egg production was 5.3±2.2 eggs/day/queen and the analysis of these brood suggested the presence of two kinds of eggs inside the colony. The development of workers from egg to adult lasted 16-52 days with the embryonic development longer than larval, prepupal or pupal stages. Despite the slow egg-laying by queens, our findings also showed that colonies of T. melanocephalum grow faster than colonies of other tramp ants.
Resumo:
Development within the cleidoic egg of birds and reptiles presents the embryo with the problem of accumulation of wastes from nitrogen metabolism. Ammonia derived from protein catabolism is converted into the less toxic product urea or relatively insoluble uric acid. The pattern of nitrogen excretion of the green iguana, Iguana iguana, was determined during embryonic development using samples from allantoic fluid and from the whole homogenized egg, and in hatchlings and adults using samples of blood plasma. Urea was the major excretory product over the course of embryonic development. It was found in higher concentrations in the allantoic sac, suggesting that there is a mechanism present on the allantoic membrane enabling the concentration of urea. The newly hatched iguana still produced urea while adults produced uric acid. The time course of this shift in the type of nitrogen waste was not determined but the change is likely to be related to the water relations associated with the terrestrial habit of the adult. The green iguana produces parchment-shelled eggs that double in mass during incubation due to water absorption; the eggs also accumulate 0.02. mM of urea, representing 82% of the total measured nitrogenous residues that accumulate inside the allantois. The increase in egg mass and urea concentration became significant after 55. days of incubation then were unchanged until hatching. © 2012 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of heparin and a mixture of penicillamine, hypotaurine, and epinephrine (PHE) solution in the in vitro fertilization (IVF) media seem to be a prerequisite when bovine spermatozoa are capacitated in vitro, in order to stimulate sperm motility and acrosome reaction. The present study was designed to determine the effect of the addition of heparin and PHE during IVF on the quality and penetrability of spermatozoa into bovine oocytes and on subsequent embryo development. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes and mitochondrial function, was diminished (P < 0.05) in the presence of heparin and PHE. Oocyte penetration and normal pronuclear formation rates, as well as the percentage of zygotes presenting more than two pronuclei, was higher (P < 0.05) in the presence of heparin and PHE. No differences were observed in cleavage rates between treatment and control (P > 0.05). However, the developmental rate to the blastocyst stage was increased in the presence of heparin and PHE (P > 0.05). The quality of embryos that reached the blastocyst stage was evaluated by counting the inner cell mass (ICM) and trophectoderm (TE) cell numbers and total number of cells; the percentage of ICM and TE cells was unaffected (P > 0.05) in the presence of heparin and PHE (P < 0.05). In conclusion, this study demonstrated that while the supplementation of IVF media with heparin and PHE solution impairs spermatozoa quality, it plays an important role in sperm capacitation, improving pronuclear formation, and early embryonic development. © 2013 The Society for In Vitro Biology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biologia Animal - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
While viviparity confers protection to the embryos during gestation, it increases energetic costs for the mother, which acquires new relations to its offspring. Maternal-fetal transfer of nutrients can occur in different patterns: as lecithotrophy (nourished by yolk) or matrotrophy (nourished by the mother). The development of Poecilia vivipara embryos was described macroscopically and microscopically, and the form of nutritional provisioning was identified. Embryonic development was divided into three prefertilization and seven postfertilization stages. The first organ to appear is the notochord, followed by the nervous, digestive and cardiovascular systems, and then by muscles and eyes. Embryonic nutritional provisioning was lecithotrophic, with yolk persisting until the last developmental stages and rich in proteins and polysaccharides. This kind of embryonic nutrition confirms the pattern found in the family Poeciliidae.
Resumo:
Embryonic chimerism is generally used in basic research and in vivo diagnosis of undifferentiated embryonic stem cells (ESC), mostly using mice embryos, although there have been reports in the literature on using rat, rabbit, sheep, chicken, primate, bovine, goat and pig embryos. Several techniques can currently be used to produce chimeric embryos, including microinjection, co-culture with ESC, fusion and aggregation. Although microinjection is the most commonly used method in mice, the mere aggregation of embryos with ESC may result in viable chimeras and be as efficient as microinjection. In mice, this chimerism technique has been shown to have the advantage of aggregating embryos in different stages of development with different ploidy, in addition to using ESC in the tetraploid complementation assay. Compared to other techniques for producing chimeras, the aggregation technique is a cheaper, faster and easier methodology to be performed. Moreover, aggregation can be simplified by chemically removing the zona pellucida with pronase or acidic Tyrode’s solution and be enhanced by using the Well of the Well culture system in combination with adhesion molecules, such as phytohemagglutinin. The most commonly used stages for chimerism by aggregation are those that precede the full compaction of the morula. In these stages, embryos have low-tension adherent junctions at the tangential point between two blastomeres. During the embryonic development of mice, the inner cell mass differentiates into epiblast and hypoblast. These layers will originate the fetal tissues and a portion of the extraembryonic tissues (yolk sac, allantois and amnion), whereas the trophectoderm (TE) gives rise to the chorion. A functional TE is essential for the complex molecular communications that occur between the embryo and the uterus. Embryos produced by somatic cell nuclear transfer, such as commercial cattle clones or endangered species, are subject to large fetal and neonatal losses. Hence embryo complementation with heterologous TE could be of assistance to decrease these losses and might as well assist development of high-value embryos in other approaches.