64 resultados para EXCITED HYPERONS
Resumo:
We analyze new results on a magnetically levitated body (a block including a magnet whose bottom pole is set in such a way as to repel the upper pole of a magnetic base) excited by a non-ideal energy source (an unbalanced electric motor of limited power supply). These new results are related to the jump phenomena and increase of power required of such sources near resonance are manifestations of a non-ideal system and they are referred as the Sommerfeld effect, which emulates an energy sink. In this work, we also discuss control strategies to be applied to this system, in resonance conditions, in order to decrease its vibration amplitude and avoiding this apparent energy sink.
Resumo:
In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.
Resumo:
Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.