67 resultados para ENDOCRINE DISRUPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spermatogonial stem cells (SSCs) either self-renew or differentiate into spermatogonia that further develop into spermatozoa. Self-renewal occurs when residing in a specific micro-environment (niche) while displacement from the niche would tip the signalling balance towards differentiation. Considering the cystic type of spermatogenesis in fish, the SSC candidates are single type A undifferentiated (A(und)) spermatogonia, enveloped by mostly one niche-forming Sertoli cell. When going through a self-renewal cell cycle, the resulting new single type Aund spermatogonium would have to recruit another Sertoli cell to expand the niche space, while a differentiating germ cell cyle would result in a pair of spermatogonia that remain in contact with their cyst-forming Sertoli cells. In zebrafish, thyroid hormone stimulates the proliferation of Sertoli cells and of type Aund spermatogonia, involving Igf3, a new member of the Igf family. In cystic spermatogenesis, type Aund spermatogonia usually do not leave the niche, so that supposedly the signalling in the niche changes when switching from self-renewal to differentiation. and rzAmh inhibited differentiation of type A(und) spermatogonia as well as Fsh-stimulated steroidogenesis. Thus, for Fsh to efficiently stimulate testis functions, Amh bioactivity should be dampened. We also discovered that Fsh increased Sertoli cell Igf3 gene and protein expression; rzIgf3 stimulated spermatogonial proliferation and Fsh-stimulated spermatogenesis was significantly impaired by inhibiting Igf receptor signaling. We propose that in zebrafish, Fsh is the major regulator of testis functions and, supported by other endocrine systems (e.g. thyroid hormone), regulates Leydig cell steroidogenesis as well as Sertoli cell number and growth factor production to promote spermatogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate physiology is highly dependent on oestrogenic and androgenic homeostasis. Interferences in this equilibrium, especially in early periods of life, may disrupt the prostate and increase the susceptibility to the development of diseases with ageing. Taking this into account, and considering the increase of environmental chemicals with endocrine-disrupting potential such as bisphenol-A (BPA), this study aimed to evaluate the prostates of adult female gerbils exposed to BPA and BPA plus testosterone from pubertal to adult periods. Morphological, stereological and chemical analyses revealed that long-term BPA exposure, even in environmental dosages, increases the proliferative status of the prostate, increases the number of ERα-positive stromal cells and elicits the development of prostatic hyperplasia in adult female gerbils. Moreover, we also observed that the association with testosterone did not increase the proliferative status of the gland, which shows that low levels of BPA are enough to cause an oestrogenic disruption of the prostate in young adults. This evidence suggests that this oestrogenic endocrine disruptor may increase the susceptibility to prostatic disorders with ageing.