200 resultados para Disulfide Bond Isomerization
Resumo:
Purpose: The aim of this study was to evaluate the influence of dentin abrasion on the microshear bond strength of two self-etching adhesive systems, using either an ultrasound diamond bur or a high-speed diamond bur.Materials and Methods: Twenty noncarious human third molars were sectioned mesiodistally into halves. The enamel was ground to expose a flat dentin surface on both sections. The dentinal surfaces were randomly assigned to two groups, depending on the method of smear layer preparation: ultrasound diamond bur (UB) or conventional diamond bur (CB). The prepared dentin surfaces received one of two self-etching systems: Clearfil SE Bond (CF) and One-Up Bond F (OB). A composite cylinder with a 0.95-mm diameter was bonded to each specimen and the microshear bond test was performed. The results were expressed in MPa and were subjected to two-way analysis of variance (ANOVA) and Tukey's test (alpha = 0.05).Results: There was no significant difference in dentin bond strength when comparing the conventional and ultrasonic abrasion methods. When the adhesive systems were compared, Clearfil SE Bond achieved higher bond strength means than did One-Up Bond F.Conclusion: The dentin surface preparation method did not influence the microshear bond strength and the Clearfil SE Bond adhesive system, independent of bur type used, Clearfil SE Bond showed higher bond strengths than did the One-Up Bond F adhesive system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To evaluate the influence of surface treatment on the shear bond strength between a Co-Cr alloy and two ceramics.Materials and Methods: Forty-eight metal cylinders were made (thickness: 4 mm, height: 3.7 mm) according ISO TR 11405. The 48 metallic cylinders were divided into four groups (n = 12), according to the veneering ceramic (StarLight Ceram and Duceram Kiss) and surface treatments: air-particle abrasion with Al(2)O(3) or tungsten drill (W). Gr1: StarLight + Al(2)O(3); Gr2: StarLight + W; Gr3: Duceram + Al(2)O(3); and Gr4: Duceram + W. The specimens were aged using thermal cycling (3000 x, 5 to 55 degrees C, dwell time: 30 seconds, transfer time: 2 seconds). The shear test was performed with a universal testing machine, using a load cell of 100 kg (speed: 0.5 mm/min) and a specific device. The bond strength data were analyzed using ANOVA and Tukey's test (5%), and the failure modes were analyzed using an optical microscope (30x).Results: The means and standard deviations of the shear bond strengths were (MPa): G1 (57.97 +/- 11.34); G2 (40.62 +/- 12.96); G3 (47.09 +/- 13.19); and G4 (36.80 +/- 8.86). Ceramic (p = 0.03252) and surface treatment (p = 0.0002) significantly affected the mean bond strength values.Conclusions: Air-particle abrasion with Al(2)O(3) improved the shear bond strength between metal and ceramics used.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose:This study evaluated the microtensile bond strength of two resin cements to dentin either with their corresponding self-etching adhesives or employing the three-step etch-and-rinse technique. The null hypothesis was that the etch-and-rinse adhesive system would generate higher bond strengths than the self-etching adhesives.Materials and Methods:Thirty-two human molars were randomly divided into four groups (N = 32, n = 8/per group): G1) ED Primer self-etching adhesive + Panavia F; G2) All-Bond 2 etch-and-rinse adhesive + Panavia F; G3) Multilink primer A/B self-etching adhesive + Multilink resin cement; G4) All-Bond 2 + Multilink. After cementation of composite resin blocks (5 x 5 x 4 mm), the specimens were stored in water (37 degrees C, 24 hours), and sectioned to obtain beams (+/- 1 mm2 of adhesive area) to be submitted to microtensile test. The data were analyzed using 2-way analysis of variance and Tukey's test (alpha = 0.05).Results:Although the cement type did not significantly affect the results (p = 0.35), a significant effect of the adhesive system (p = 0.0001) was found on the bond strength results. Interaction terms were not significant (p = 0.88751). The etch-and-rinse adhesive provided significantly higher bond strength values (MPa) with both resin cements (G2: 34.4 +/- 10.6; G4: 33.0 +/- 8.9) compared to the self-etching adhesive systems (G1: 19.8 +/- 6.6; G3: 17.8 +/- 7.2) (p < 0.0001). Pretest failures were more frequent in the groups where self-etching systems were used.Conclusion:Although the cement type did not affect the results, there was a significant effect of changing the bonding strategy. The use of the three-step etch-and-rinse adhesive resulted in significantly higher bond strength for both resin cements on dentin.CLINICAL SIGNIFICANCEDual polymerized resin cements tested could deliver higher bond strength to dentin in combination with etch-and-rinse adhesive systems as opposed to their use in combination with self-etching adhesives.(J Esthet Restor Dent 22:262-269, 2010).
Resumo:
Objectives: To evaluate the hypothesis that a process of hydrofluoric acid precipitate neutralization and fatigue load cycling performed on human premolars restored with ceramic inlays had an influence on microtensile bond strength results (MTBS). Methods: MOD inlay preparations were performed in 40 premolars (with their roots embedded in acrylic resin). Forty ceramic restorations were prepared using glass-ceramic (IPS Empress). The inner surfaces of all the restorations were etched with 10% hydrofluoric acid for 60 seconds, rinsed with water and dried. The specimens were divided into two groups (N=20): 1-without neutralization; 2-with neutralization. All the restorations were silanized and adhesively cemented (self-curing and self-etching luting composite system, Multilink). Ten premolars from each group were submitted to mechanical cycling (1,400,000 cycles, 50N, 37 degrees C). After cycling, the samples were sectioned to produce non-trimmed beam specimens (vestibular dentin-restoration-lingual dentin set), which were submitted to microtensile testing. Results: Bond strength was significantly affected by the surface treatment (p<0.0001) (no neutralization > neutralization) and mechanical cycling (p<0.0001) (control > cycling) (2-way ANOVA and Tukey test, alpha=.05). Conclusion: Hydrofluoric acid precipitate neutralization appears to significantly damage the resin bond to glass-ceramic and should not be recommended. The clinical simulation of the specimens, by using mechanical cycling, is important when evaluating the ceramic-dentin bond.
Resumo:
Purpose: This study evaluated the bond strength of two etch-and-rinse adhesive systems (two- and three-step) and a self-etching system to Coronal and root canal dentin.Materials and Methods: The root canals of 30 human incisors and canines were instrumented and prepared with burs. The posts used for luting were duplicated with dual resin cement (Duo-link) inside Aestheti Plus #2 molds. Thus, three groups were formed (n = 10) according to the adhesive system employed: All-Bond 2 (TE3) + resin cement post (rcp) + Duo-link (DI); One-Step Plus (TE2) + rcp + DI; Tyrian/One-Step Plus (SE) + rcp + DI. Afterwards, 8 transverse sections (1.5 mm) were cut from 4 mm above the CEJ up to 4 mm short of the root canal apex, comprising coronal and root canal dentin. The sections were submitted to push-out testing in a universal testing machine EMIC (1 mm/min). Bond strength data were analyzed with two-way repeated measures ANOVA and Tukey's test (p < 0.05).Results: The relationship between the adhesives was not the same in the different regions (p < 0.05). Comparison of the means achieved with the adhesives in each region (Tukey; p < 0.05) revealed that TE3 (mean standard deviation: 5.22 +/- 1.70) was higher than TE2 (2.60 +/- 1.74) and SE (1.68 +/- 1.85).Conclusion: Under the experimental conditions, better bonding to dentin was achieved using the three-step etch-and-rinse system, especially in the coronal region. Therefore, the traditional etch-and-rinse three-step adhesive system seems to be the best choice for teeth needing adhesive endodontic restorations.
Resumo:
Purpose: The objective of this study was to evaluate the effect of thermocycling (TC), self-adhesive resin cements and surface conditioning on the microtensile bond strength (mu TBS) between feldspathic ceramic blocks and resin cements.Materials and Methods: Fifty-six feldspathic ceramic blocks (10 x 7 x 5 mm) (Vita Mark II) were divided into groups according to the factors "resin cement" (3 cements) and "surface conditioning" (no conditioning or conditioning [10% hydrofluoric acid etching for 5 min + silanization]) (n = 8): group 1: conditioning+Variolink II (control group); group 2: no conditioning+Biscem; group 3: no conditioning+RelyX U100; group 4: no conditioning+Maxcem Elite; group 5: conditioning+Biscem; group 6: conditioning+RelyX U100; group 7: conditioning+Maxcem Elite. The ceramic-cement blocks were sectioned to produce non-trimmed bar specimens (adhered cross-sectional area: 1 +/- 0.1 mm(2)), which were divided into two storage conditions: dry, mu TBS immediately after cutting; TC (12,000x, 5 degrees C/55 degrees C). Statistical significance was deterimined using two-way ANOVA (7 strategies and 2 storage conditions) and the post-hoc Tukey test (p<0.05).Results: Resin cement and thermocycling affected the mu TBS significantly (p = 0.001). In the dry condition, group 5 (18 +/- 6.5 MPa) presented the lowest values of mu TBS when compared to the other groups. TC decreased the mean mu TBS values significantly (p<0.05) for all resin cements tested (9.7 +/- 2.3 to 22.1 +/- 6.3 MPa), except for the resin cement RelyX U100 (22.1 +/- 6.3 MPa). In groups 3 and 4, it was not possible to measure mu TBS, since these groups had 100% pre-test failures during sectioning. Moreover, the same occurred in group 2 after TC, where 100% failure was observed during thermocycling (spontaneous failures).Conclusion: Hydrofluoric acid etching and silanization of the feldspathic ceramic surface are essential for bonding self-adhesive resin cement to a feldspathic ceramic, regardless of the resin cement used. Non-etched ceramic is not recommended.
Resumo:
Objectives. This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems.Methods. Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha(R)) (N=30) were randomly divided into three groups according to the repair method: PR-Porcelain Repair Kit (Bisco) [etching with 9.5% hydrofluoric acid + silanization + adhesive]; CJ-CoJet Repair Kit (3M ESPE) [(chairside silica coating with 30 mu m SiO2 + silanization (ESPE(R)-Sil) + adhesive (Visio(TM)-Bond)]; CL-Clearfil Repair Kit [diamond surface roughening, etching with 40% H3PO4 + Clearfil Porcelain Bond Activator + Clearfil SE Bond)]. Resin composite was photo-polymerized on each conditioned ceramic block. Non-trimmed beam specimens were produced for the microtensile bond strength (mu TBS) tests. In order to study the hydrolytic durability of the repair methods, the beam specimens obtained from each block were randomly assigned to two conditions. Half of the specimens were tested either immediately after beam production (Dry) or after long-term water storage (37 degrees C, 150 days) followed by thermocyling (12,000 cycles, 5-55 degrees C) in a universal testing machine (1 mm/min). Failure types were analyzed under an optical microscope and SEM.Results. mu TBS results were significantly affected by the repair method (p=0.0001) and the aging conditions (p=0.0001) (two-way ANOVA, Tukey's test). In dry testing conditions, PR method showed significantly higher (p < 0.001) repair bond strength (19.8 +/- 3.8 MPa) than those of CJ and CL (12.4 +/- 4.7 and 9.9 +/- 2.9, respectively). After long-term water storage and thermocycling, CJ revealed significantly higher results (14.5 +/- 3.1 MPa) than those of PR (12.1 +/- 2.6 MPa) (p < 0.01) and CL (4.2 +/- 2.1 MPa) (p < 0.001). In all groups when tested in dry conditions, cohesive failure in the composite accompanied with adhesive failure at the interface (mixed failures), was frequently observed (76%, 80%, 65% for PR, CJ and CL, respectively). After aging conditions, while the specimens treated with PR and CJ presented primarily mixed failure types (52% and 87%, respectively), CL group presented mainly complete adhesive failures at the interface (70%).Significance. Hydrolytic stability of the repair method based on silica coating and silanization was superior to the other repair strategies for the ceramic tested. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: This study evaluated the effect of bleaching gel containing 10%, 15% and 20% carbamide peroxide (CP) on the bond strength of dental enamel or dentin and resin composite restorations.Methods: The buccal surfaces of 12 bovine tooth crowns were conditioned with 37% phosphoric acid, and the adhesive resin Single Bond 2 and the resin composite Filtek Z350 were used to perform the restorations. The blocks were sectioned to obtain bar specimens. Each specimen group (enamel-E, dentin-D) was divided into four subgroups (n=15): S-artificial saliva; 10-10% CP bleaching; 15-15% CP bleaching; 20-20% CP bleaching. CP was applied for six hours daily for two weeks. The specimens were submitted to the a test in a universal testing machine. The data were analyzed by one-way ANOVA and the Tukey post-hoc test and a correlation analysis (r) was performed.Results: For Group E, the mean value (+/- standard-deviation) was 21.86 (+/- 6.03)a, 18.91 (+/- 8.31)ab, 15.43 (+/- 7.44)b and 10.6 (+/- 4.94)c for ES, E10, E15 and E20, respectively. For Group D, the alpha values were 34.73 (+/- 4.68)a, 35.12 (+/- 13.43)a, 29.67 (+/- 6.84)ab and 24.56 (+/- 6.54)b for DS, D10, D15 and D20, respectively. A negative correlation between the CP concentration and mean values was observed for both the enamel (r=-0.95) and dentin (r=-0.85) groups.Conclusion: In the current study, the bond strength of the restoration to enamel and the restoration to dentin were influenced by the application of CP and was dependent on the CP concentration in the bleaching gel.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the effect of cement shade, light-curing unit, and water storage on tensile bond strength (a) of a feldspathic ceramic resin bonded to dentin.Materials and Methods: The dentin surface of 40 molars was exposed and etched with 37% phosphoric acid, then an adhesive system was applied. Forty blocks of feldspathic ceramic (Vita VM7) were produced. The ceramic surface was etched with 10% hydrofluoric acid for 60 s, followed by the application of a silane agent and a dual-curing resin cement (Variolink II). Ceramic blocks were cemented to the treated dentin using either A3 or transparent (Tr) shade cement that was activated using either halogen or LED light for 40 s. All blocks were stored in 37 degrees C distilled water for 24 h before cutting to obtain non-trimmed bar-shaped specimens (adhesive area = 1 mm(2) +/- 0.1) for the microtensile bond strength test. The specimens were randomly grouped according to the storage time: no storage or stored for 150 days in 37 degrees C distilled water. Eight experimental groups were obtained (n = 30). The specimens were submitted to the tensile bond strength test using a universal testing machine at a crosshead speed of 1 mm/min. The data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha = 0.05).Results: The mean bond strength values were significantly lower for the corresponding water stored groups, except for the specimens using A3 resin cement activated by halogen light. There was no significance difference in mean bond strength values among all groups after water storage.Conclusion: Water storage had a detrimental effect under most experimental conditions. For both cement shades investigated (Tr and A3) under the same storage condition, the light-curing units (QTH and LED) did not affect the mean microtensile bond strengths of resin-cemented ceramic to dentin.
Resumo:
This study evaluated the effect of different thickness of disk-shaped specimens on the push-out bond strength test. Eighteen lower bovine teeth were sectioned (20mm) and prepared (15mm) with the same post system drill (Light Post (R) #1, Schaumburg, IL, Bisco, USA). The apical third of each specimen was embedded in a plastic matrix filled with an acrylic resin (Dencrilay (TM), Dencril, São Paulo, Brazil). The posts were cleaned with alcohol, silanated (ProSil (R), FGM, Joenville, SC, Brazil) and cemented with the RelyX (TM) U100 (3M ESPE, St. Paul, MN, USA). Each specimen was sectioned into three pieces of differing thicknesses (1, 2, and 4 mm). These disk-samples were allocated into 3 groups (n=18) and subjected to push-out testing. One-way ANOVA showed no influence of the specimen thickness on the results (p=0.842). No correlation was observed between thickness and push-out bond strength (Pearson Correlation, r(2)=0.0688; P=0.6209). The push-out bond strength test was not affected by the thickness of the disk-specimens.
Resumo:
This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC) methods were evaluated: (1) 110-mu m Al(2)O(3)+Silanization; (2) Chairside silica coating+silanization: (3) Laboratory silica coating+silanization. Following surface conditioning, the resin cement (Panavia F) was bonded to the conditioned ceramics. Although no statistically significant differences (p=0.1076) were seen between the test methods, results yielded with the different surface conditioning methods showed statistically significant differences (p<0.0001) (SC2=SC3>SC1.). As for the interaction between the factors, two-way ANOVA showed that it was not statistically significant (p=0.1443). MTBS test resulted in predominantly mixed failure (85%), but SBS test resulted in exclusively adhesive failure. on the effects of different surface conditioning methods, chairside and laboratory tribochemical silica coating followed by silanization showed higher bond strength results compared to those of aluminum oxide abrasion and silanization, independent of the test method employed.
Resumo:
Objectives. To test the hypothesis that multiple firing and silica deposition on the zirconia surface influence the bond strength to porcelain.Materials and methods. Specimens were cut from yttria-stabilized zirconia blocks and sintered. Half of the specimens (group S) were silica coated (physical vapor deposition (PVD)) via reactive magnetron sputtering before porcelain veneering. The remaining specimens (group N) had no treatment before veneering. The contact angle before and after silica deposition was measured. Porcelain was applied on all specimens and submitted to two (N2 and S2) or three firing cycles (N3 and S3). The resulting porcelain-zirconia blocks were sectioned to obtain bar-shaped specimens with 1 mm(2) of cross-sectional area. Specimens were attached to a universal testing machine and tested in tension until fracture. Fractured surfaces were examined using optical microscopy. Data were statistically analyzed using two-way ANOVA, Tukey's test (alpha = 0.05) and Weibull analysis.Results. Specimens submitted to three firing cycles (N3 and S3) showed higher mean bond strength values than specimens fired twice (N2 and S2). Mean contact angle was lower for specimens with silica layer, but it had no effect on bond strength. Most fractures initiated at porcelain-zirconia interface and propagated through the porcelain.Significance. The molecular deposition of silica on the zirconia surface had no influence on bond strength to porcelain, while the number of porcelain firing cycles significantly affected the bond strength of the ceramic system, partially accepting the study hypothesis. Yet, the Weibull modulus values of S groups were significantly greater than the m values of N groups. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.