68 resultados para Dimensión fractal
Resumo:
Aims: This study compared fractal dimension (FD) values on mandibular trabecular bone in digital and digitized images at different spatial and contrast resolutions. Materials and Methods: 12 radiographs of dried human mandibles were obtained using custom-fabricated hybrid image receptors composed of a periapical radiographic film and a photostimulable phosphor plate (PSP). The film/ PSP sets were disassembled, and the PSPs produced images with 600 dots per inch (dpi) and 16 bits. These images were exported as tagged image file format (TIFF), 16 and 8 bits, and 600, 300 and 150 dpi. The films were processed and digitized 3 times on a flatbed scanner, producing TIFF images with 600, 300 and 150 dpi, and 8 bits. On each image, a circular region of interest was selected on the trabecular alveolar bone, away from root apices and FD was calculated by tile counting method. Two-way ANOVA and Tukey’s test were conducted to compare the mean values of FD, according to image type and spatial resolution (α = 5%). Results: Spatial resolution was directly and inversely proportional to FD mean values and standard deviation, respectively. Spatial resolution of 150 dpi yielded significant lower mean values of FD than the resolutions of 600 and 300 dpi ( P < 0.05). A nonsignificant variability was observed for the image types ( P > 0.05). The interaction between type of image and level of spatial resolution was not signi fi cant (P > 0.05). Conclusion: Under the tested, conditions, FD values of the mandibular trabecular bone assessed either by digital or digitized images did not change. Furthermore, these values were in fluenced by lower spatial resolution but not by contrast resolution.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.
Automatic method to classify images based on multiscale fractal descriptors and paraconsistent logic
Resumo:
In this study is presented an automatic method to classify images from fractal descriptors as decision rules, such as multiscale fractal dimension and lacunarity. The proposed methodology was divided in three steps: quantification of the regions of interest with fractal dimension and lacunarity, techniques under a multiscale approach; definition of reference patterns, which are the limits of each studied group; and, classification of each group, considering the combination of the reference patterns with signals maximization (an approach commonly considered in paraconsistent logic). The proposed method was used to classify histological prostatic images, aiming the diagnostic of prostate cancer. The accuracy levels were important, overcoming those obtained with Support Vector Machine (SVM) and Bestfirst Decicion Tree (BFTree) classifiers. The proposed approach allows recognize and classify patterns, offering the advantage of giving comprehensive results to the specialists.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Saúde Coletiva - FMB