509 resultados para Dental Pulp Capping


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of the dental pulp can be extended from factors related to its aggression to those related to new concepts of regeneration. The purpose of this compilation of studies is to present the evolution of a research subject from damage to repair. Innitially, studies will demonstrate the ability of dental procedures to generate heat and consequently affect the dental pulp. In sequence, studies will also present some effects of different pulp capping materials on dental pulp cells, related to the cytotoxicity of these materials and inflammatory potential. Finally, as the subject is emmerging and gaining importance in the literature, this compilation will present data from recent studies on the role of dental pulp progenitor cells in the regeneration and repair of dental pulp, as well as an alternative for a scaffold that could be used for clinical translation of research in the field. In summary, dentists must be aware of these different aspects and that the knowledge on factors and mechanisms involved in the aggression of the dental pulp can also serve as basis for understanding aspects for regeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Besides possessing good mechanical properties, dental materials should present a good biological behavior and should not injure the involved tissues. Bond strength and biocompatibility are both highly significant properties of dentin adhesives. For that matter, these properties of four generations of adhesive systems (Multi-Purpose/Single Bond/SE Plus/Easy Bond) were evaluated.Eighty bovine teeth had their dentin exposed (500- and 200-mu m thickness). Adhesive was applied on the dentin layer of each specimen. Following that, the microshearing test was performed for all samples. A dentin barrier test was used for the cytotoxicity evaluation. Cell cultures (SV3NeoB) were collected from testing materials by means of 200- or 500-mu m-thick dentin slices and placed in a cell culture perfusion chamber. Cell viability was measured 24 h post-exposition by means of a photometrical test (MTT test).The best bonding performance was shown by the single-step adhesive Easy Bond (21 MPa, 200 mu m; 27 MPa, 500 mu m) followed by Single Bond (15.6 MPa, 200 mu m; 23.4 MPa, 500 mu m), SE Plus (18.2 MPa, 200 mu m; 20 MPa, 500 mu m), and Multi-Purpose (15.2 MPa, 200 mu m; 17.9 MPa, 500 mu m). Regarding the cytotoxicity, Multi-Purpose slightly reduced the cell viability to 92 % (200 mu m)/93 % (500 mu m). Single Bond was reasonably cytotoxic, reducing cell viability to 71 % (200 mu m)/64 % (500 mu m). The self-etching adhesive Scotchbond SE decreased cell viability to 85 % (200 mu m)/71 % (500 mu m). Conversely, Easy Bond did not reduce cell viability in this test, regardless of the dentin thickness.Results showed that the one-step system had the best bond strength performance and was the least toxic to pulp cells. In multiple-step systems, a correct bonding technique must be done, and a pulp capping strategy is necessary for achieving good performance in both properties.The study showed a promising system (one-step self-etching), referring to it as a good alternative for specific cases, mainly due to its technical simplicity and good biological responses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective. The general aim of this article is to describe the state-of-the-art of biocompatibility testing for dental materials, and present new strategies for improving operative dentistry techniques and the biocompatibility of dental materials as they relate to their interaction with the dentin-pulp complex.Methods. The literature was reviewed focusing on articles related to biocompatibilty testing, the dentin-pulp complex and new strategies and materials for operative dentistry. For this purpose, the PubMed database as well as 118 articles published in English from 1939 to 2014 were searched. Data concerning types of biological tests and standardization of in vitro and in vivo protocols employed to evaluate the cytotoxicity and biocompatibility of dental materials were also searched from the US Food and Drug Administration (FDA), International Standards Organization (ISO) and American National Standards Institute (ANSI).Results. While there is an ongoing search for feasible strategies in the molecular approach to direct the repair or regeneration of structures that form the oral tissues, it is necessary for professionals to master the clinical therapies available at present. In turn, these techniques must be applied based on knowledge of the morphological and physiological characteristics of the tissues involved, as well as the physical, mechanical and biologic properties of the biomaterials recommended for each specific situation. Thus, particularly within modern esthetic restorative dentistry, the use of minimally invasive operative techniques associated with the use of dental materials with excellent properties and scientifically proved by means of clinical and laboratory studies must be a routine for dentists. This professional and responsible attitude will certainly result in greater possibility of achieving clinical success, benefiting patients and dentists themselves.Signcance. This article provides a general and critical view of the relations that permeate the interaction between dental materials and the dentin-pulp complex, and establish real possibilities and strategies that favor biocompatibility of the present and new products used in Dentistry, which will certainly benefit clinicians and their patients. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To evaluate the short-term response of human pulps to ethanol-wet bonding technique. Methods Deep class V cavities were prepared on 17 sound premolars and divided into three groups. After acid-etching, the cavities from groups 1 (G1) and 2 (G2) were filled with 100% ethanol or distilled water, respectively, for 60 s before the application of Single Bond 2. In group 3 (G3, control), the cavity floor was lined with calcium hydroxide before etching and bonding. All cavities were restored with resin composite. Two teeth were used as intact control. The teeth were extracted 48 h after the clinical procedures. From each tooth serial sections were obtained and stained with haematoxylin and eosin (H/E) and Masson's trichrome. Bacteria microleakage was assessed using Brown & Brenn. All sections were blindly evaluated for five histological features. Results Mean remaining dentine thickness was 463 ± 65 μm (G1); 425 ± 184 μm (G2); and 348 ± 194 μm (G3). Similar pulp reactions followed ethanol- or water-wet bonding techniques. Slight inflammatory responses and disruption of the odontoblast layer related to the cavity floor were seen in all groups. Stained bacteria were not detected in any cavities. Normal pulp tissue was observed in G3 except for one case. Conclusions After 48 h, ethanol-wet bonding does not increase pulpal damage compared to water-wet bonding technique. Clinical significance Ethanol-wet bonding may increase resin-dentine bond durability. This study reported the in vivo response of human pulp tissue when 100% ethanol was applied previously to an etch-and-rinse simplified adhesive system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calcium hydroxide has been used as pulp-capping agent and canal dressing due to its antimicrobial and anti-inflammatory properties besides its ability to induce formation of mineralized tissues. The aim of this study was to evaluate the susceptibility to calcium hydroxide of 146 bacterial strains isolated from endodontic infections. MIC was determined by using an agar dilution method, while contact bactericide activity was performed through in broth. All the isolates were sensitive to calcium hydroxide in concentrations that varied from 0.5mg/ml to 128 mg/ml, and the genera Enterococcus, Pseudomonas, Staphylococcus and Actinomyces were the most resistant. Gramnegative anaerobes proved to be the most sensitive isolates. All the isolates were inhibited after 60 minutes of contact with the alkali in concentration of 100mg/ml

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated the repair process after delayed replantation of rat teeth, using calcium hydroxide (Ca(OH)(2)) mixed with camphorated p-monochlorophenol (CMCP), chlorhexidine 2% (CHX), or saline as temporary root canal dressing to prevent and/or control inflammatory radicular resorption. Thirty Wistar rats (Rattus norvegicus albinos) had their right upper incisor extracted, which was bench-dried for 60 minutes. The dental papilla, the enamel organ, the dental pulp, and the periodontal ligament were removed. The teeth were immersed in 2% acidulated-phosphate sodium fluoride solution for 10 minutes. The root canals were dried with absorbent paper cones and divided into 3 groups of 10 animals according to root canal dressing used: group 1: Ca(OH)(2) + saline, group 2: Ca(OH)(2) + CMCP, and group 3: Ca(OH)(2) + CHX 2%. Before replanting, the teeth sockets were irrigated with saline. Histological analysis revealed the presence of inflammatory resorption, replacement resorption, and ankylosis in all 3 groups. Statistical analysis showed a significant difference between group 3 and the other groups. The use of Ca(OH)(2) mixed with CMCP or CHX did not show an advantage over the use of Ca(OH)(2) mixed with saline in preventing and/or controlling inflammatory resorption in delayed replantation of rat teeth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: To evaluate 2 techniques for the treatment of human primary molars with necrotic Pulp and bifurcation bone loss by means of radiographic examination for 48 months. Method and Materials: Fifty-one mandibular primary molars were evaluated in children ranging from 4.5 to 6.5 years of age. The teeth with necrotic pulp and bifurcation bone loss were diagnosed by radiographic examination. The teeth were divided into 2 groups: group 1 (28 teeth)-pulpotomy technique using formocresol as a temporary dressing between sessions and coronal chamber obturation with zinc oxide-eugenol cement; and group 2 (23 teeth)-pulpectomy technique with calcium hydroxide paste as a temporary dressing between sessions and root canal obturation with a dense Calcium hydroxide paste. Standardized radiographs were taken immediately after the fillings were completed and after 12, 24, 36, and 48 months. The radiographs were digitized and analyzed with software that outlined and measured the bifurcation radiolucency. Results: Bifurcation radiolucency reduced significantly or repaired completely for both treatnients in the first 12 months. Minor radiographic reduction of the lesion was observed from 12 to 24 months, and no significant reduction of the remaining radioulcent area was observed from 24 to 48 months after treatment. Conclusion: The 2 endodontic techniques evaluated showed similar results. The main effect of treatment on the lesion repair was obtained in the first year after treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: the aim of the present study was to compare the effects of Er:YAG and diode laser treatments of the root surface on intrapulpal temperature after scaling and root planing with hand instruments.Methods: Fifteen extracted single-rooted teeth were scaled and root planed with hand instruments. The teeth were divided into 3 groups of 5 each and irradiated on their buccal and lingual surfaces: group A: Er:YAG laser, 2.94 mum/100 mJ/10 Hz/ 30 seconds; group B: diode laser, 810 nm/1.0 W/0.05 ms/30 seconds; group C: diode laser, 810 nm/1.4 W/0.05 ms/30 seconds. The temperature was monitored by means of a type T thermocouple (copper-constantan) positioned in the pulp chamber to assess pulpal temperature during and before irradiation. Afterwards, the specimens were longitudinally sectioned, and the buccal and lingual surfaces of each root were analyzed by scanning electron microscopy.Results: In the Er:YAG laser group, the thermal analysis revealed an average temperature of -2.2 +/- 1.5degreesC, while in the diode laser groups, temperatures were 1.6 +/- 0.8degreesC at 1.0 W and 3.3 +/- 1.0degreesC at 1.4 W. Electronic micrographs revealed that there were no significant morphological changes, such as charring, melting, or fusion, in any group, although the specimens were found to be more irregular in the Er:YAG laser group.Conclusions: the application of Er:YAG and diode lasers at the utilized parameters did not induce high pulpal temperatures. Root surface irregularities were more pronounced after irradiation with an Er:YAG laser than with a diode laser.